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Abstract

A cytokine based periodic immunotherapy treatment is included in a
model of tumor growth with a delay. The effects of dose schedule are stud-
ied in the case of a weak immune system and a growing tumor. We find
the existence of metastable states (that may last for tens of years) induced
by the treatment, and also of potentially adverse effects of the dosage fre-
quency on the stabilization of the tumor. These two effects depend on
the delay between tumor growth and the immune system response, the
cytokine dose burden and other parameters considered in the model.

Keywords tumor growth, delay differential equations, immunotherapy, im-
munodepression
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1 Introduction

The development of a cancer tumor under the influence of the immune system
deploys a very rich dynamics with some aspects that must be highlighted. The
effector mechanism by which immune systems attacks an immunogenic tumor
is cell-mediated cytotoxicity. Innate immunity cells, as macrophages and natu-
ral killers (NK) but, above all, adaptive immunity cells, as T lymphocytes, are
the effector cells in the anti-tumor immune response. T-lymphocytes become
activated in the presence of certain cytokines and are leaded by the presence of
antibodies attached to cancerous cells (Tortora and Grabowski, 1999; Dezfouli
et al., 2005; Saleh et al., 2005). Antibodies are produced by B-lymphocytes
whose growth and activation, in turn, are stimulated by the cytokines produced
by T-lymphocytes in contact with the tumor-associated antigens (TAA). A de-
lay between the detection of the “strange cells” (antigen) and the attack of the
T-lymphocytes exists, being a (destabilizing) control parameter of the immune
response (Asachenkov et al., 1994; Marchuk, 1997; Byrne, 1997; Nani and Freed-
man, 2000; Galach, 2003).

However, when the tumor size increases lymphocyte effectivity may decrease.
Various mechanisms have been proposed to account for this effect: i) antigenic
heterogeneity: cells from one tumor may lose their specific tumor-associated
antigens (TAA) and acquire unrelated TAA (each TAA requires a specific im-
mune response) (Schuster et al., 2006); or ii) immunodepression: deactivation
of lymphocytes that enter the tumor region (de Boer et al., 1985; Whiteside,
2002).

As far as we know, the existence of the immune response delay just described
between the stimulus (antigen) and the triggering of the defenses of the immune
system, has not been considered enough in tumor models found in the literature,
despite the reports by Forys (2002) and Galach (2003). In these papers, time
delay is introduced in the tumor-immune system model proposed by Kuznetsov
et al. (1994) following the Marchuk approach to immunological response (see
Marchuk (1997) or Asachenkov et al. (1994), for example). Marchuk has shown
that time delay is a very important factor to take into account in the modelling
of the immune system and the reaction of living organisms to diseases. Consid-
eration of this factor may also shed light on the failure of therapies, not only in
the much more complicated clinical context, but also in laboratory models as
the murine adenoviral-vectored immunotherapy reported by Liu et al. (2002).

Another delay times have been shown to be of importance. For example,
Villasana and Radunskaya (2003) introduce a delay time in a model adapted
from that of Kirschner and Panetta (1998) to take into account the cell cycle,
leading to a linear delayed term in the equations. A similar approach is adopted
by Byrne (1997); Forys and Bodnar (2003) to multicellular spheroidal tumors
in the framework of tumour growth under nutrient diffusion and consumption
(Greenspan, 1972).

Oncological immunotherapy uses self immune system to prevent, treat and
control the population of tumoral cells. In its simplest form, immunotherapy
attempts to boost immune response to cancerous antigens by means of exposing
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T-cells to these proteins. The immune response against the tumor can be modu-
lated by unspecific stimulation with adjuvants (e.g., cytokines) (Schuster et al.,
2006). Cytokines are a group of proteinic compounds involved in inter-cellular
communication, particularly relevant in the immune response coordination (Tor-
tora and Grabowski, 1999). The first cytokine treatment aproved by FAA was
interferon-α (Horton et al., 1999; Brassard et al., 2002; Berman et al., 2006).
The role played by IF-α consists not only in immune stimulation but also in
increasing TAA expression by the cancerous cells. Another cytokine treatments
currently in use are IL-2 and IL-12 (Szymanska, 2003; Schuster et al., 2006;
Berman et al., 2006) which are mainly immune modulators. These treatments
are not entirely effective because high doses (needed to obtain an apreciable
increase in the lymphocite growth rate) also produce negative side effects. The
current trends in immunology try to avoid these decreasing peak levels (using
gene therapy, reviewed by Cross and Burmester (2006)) and combining cytokines
in naturally occurring proportions (Schuster et al., 2006).

The study presented in the this paper is based on a previous model intro-
duced by some of the authors (Sotolongo-Costa et al., 2003) to describe the
effects of tumor immunodepression. That model is modified to include a “time
delay effect” in the stimulation of the the immune system through its interaction
with the tumor, thus giving a set of delay ordinary differential equations (Beretta
and Kuang, 2002; Hale, 1977; Gopalsamy, 1992; Driver, 1977). The influence of
this time delay effect is studied both with and without immunotherapy. Sample
values for the model parameters will be taken within the range of biological
significance, estimated below.

2 Model

The model introduced by Sotolongo-Costa et al. (2003), accounting for immune
system interaction and immunotherapy stimulation was

dX
dt = aX − bXY
dY
dt = dXY − fY − kX + u + F cos2 wt

(1)

where X(t), and Y (t) denote the populations of cancer cells and immune cells
(lymphocytes and NK), respectively.

The first equation describes the rate of change for the number of tumoral cells
X . As in other models (see d’Onofrio (2005) for an unifying review), the tumor
growth rate is assumed proportional to X , while the tumoral cells mortality is
taken proportional to the frequency of random interaction with the effector cells
Y .

The second equation describes the dynamics of the immune cell popula-
tion. It is assumed to exist a constant flux rate u of mature lymphocytes and
NKs towards the tumor region. Moreover, lymphocytes are recruited through
the term dXY accounting for the presence of the tumor and its interaction
with lymphocytes (Kirschner and Panetta, 1998). Constant factor d is usually
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termed “antigenicity” of the tumor and represents the number of T lymphocyte
precursors that can be stimulated upon introduction of the antigen (de Boer
et al., 1985). Tumor induced immunodepression (the decrease in the effectivity
of T-lymphocytes) is assumed proportional to the tumor size (Sotolongo-Costa
et al., 2003) through a term −kX which represents a decrease in the number of
activated lymphocytes arriving to the tumor due to the induced T-suppressor
cells (de Boer et al., 1985) and has been judged as of great interest by d’Onofrio
(2005) (although this author disagrees with the linear functional form). Lym-
phocytes are also affected by natural death or spontaneous deactivation, −fY ,
proportional to the number of effector cells.

Immunodepression term −kX allows to account for general immunosuppres-
sion, which is mathematically expressed as Y (t) = 0. Under these circumstances
immune system evolution is not well described by the system of equations (1)
anymore, and a fatal end (tumor has escaped immune control) is assumed. This
effect of the term −kX is considered by d’Onofrio (2005) as “physically incon-
sistent”, however it only represents a limitation of the model to “moderate”
conditions where appreciable quantities of both populations do exist. From the
practical point of view, this only means that the numerical integration of the
system of equations cannot proceed any further.

On the other hand, immunotherapy with cytokines has two main effects
(Schuster et al., 2006): it increases the number of locally activated immune cells
and also enhances the cancerous cells recognisement by the immune cells. As
in other models we will neglect this latter effect, and include it in the model
as a periodically scheduled stimulation (Sotolongo-Costa et al., 2003) of the
form F cos2 wt, where w is the therapy frequency and F the peak dose value.
Although somewhat unrealistic, this is a commonly used model because it only
involves two parameters and is amenable to analytical study (d’Onofrio, 2005).

Following Asachenkov et al. (1994); Galach (2003) we consider the time delay
introducing in the recruitment term, dXY , the values X(t − T ) and Y (t − T ),
where T is the average time leading from the detection of tumour growth by the
immune system to the arrival of new activated T-lymphocytes. The evolution
equations (1) become now:

dX
dt = aX − bXY
dY
dt = dX(t − T )Y (t − T )− fY − kX + u + F cos2 wt

(2)

For F = k = u = 0, the classical delayed Lotka-Volterra model (Driver, 1977)
is recovered having a dynamics time scale tc = 1/

√
af . This time tc, called

in what follows characteristic time, gives the time scale on which oscillations
around the equilibrium would be brought about by the population competition
(in our complete system, this oscillation may or may not be present, depending
on the values of the linearized system eigenvalues). Recasting system (2) in
terms of this new time unit tc, we obtain the following simplified expressions:

dx
dt = αx − xy
dy
dt = x(t − τ)y(t − τ) − 1

αy − κx + σ + V cos2 βt
(3)
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where we have defined the dimensionless variables and parameters

x = dX/
√

af, y = bY/
√

af, τ = T/tc, V = Fb/af

α =
√

a/f, β = w/
√

af, κ = kb/d
√

af, σ = ub/af

The assumption of tc as time unit will allow us to discuss the system tem-
poral behavior independently of the absolute value of the tumoral cells and
lymphocytes populations and growth/death/interaction rate coefficients.

3 Parameter estimation

To get some insight about the numerical range of the parameters included in
the model we give some estimates of the values of a, f , T , b, d, Y0, u, X0, k as
well as F and w , using days and cells as basic units.

• a (intrinsic tumor growth rate)
It is known that a “representative” value for the duplication time of a
solid tumor is about 70 days (Begg and Steel, 1977). Obviously, there
are tumors that duplicate their volume in 20 days, whereas others do it
in 100 days, and tumors like those of colon or rectal cancer take a few
years to duplicate. We are assuming this growth in the (almost) absence
of lymphocytes so a = log 2/Td (days)−1 may be bounded to the interval
a ∈ [10−4, 10−2] days−1, a conservative estimation, compared to others
found in the literature (de Pillis et al., 2005).

• f (inverse of lymphocite mean life)
T (lymphocite proliferation and maturation time)
The lifetime of lymphocytes can be measured, being about 30 days (Kuznetsov
et al., 1994), hence the estimation f ∈ [10−2, 10−1] days−1. The time
needed to proliferate ranges from 2 to 12 days (Byrne, 1997) which can be
taken as the delay time T of the immune system, T ∈ [1, 20] days.

• b (cancerous cells killed per effector cell and per unit time)
d (T-lymphocytes recruited upon interaction of one effector cell
with one cancerous cell in the tumor)
Following Kuznetsov et al. (1994); Kirschner and Panetta (1998), these
parameters can be guessed as b, d ∈ [10−9, 10−7] (cells day)−1.

• Y0 (initial immune cells population around the tumor)
u (constant influx of effector cells from the immune system in
the absence of the tumor)
In the absence of tumor, the second equation in (2) shows the existence
of an initial steady state, u − fY = 0. From data about the number of
cytotoxic lymphocytes produced by the spleen taken from the literature
(Forys, 2002; Galach, 2003; Sotolongo-Costa et al., 2003) we estimate the
number of lymphocytes involved in the initial immune response as Y0 ≃
3 · 105 cells. From these data we obtain u ≃ 1.2 · 104 cells · day−1.
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• X0 (initial tumor cell population)
k (immunodepression coefficient)
We assume the existence of an initial population X0 of about 106 cells
(correspoding to a tumour of about 1 mg, i.e. in the order of 1 mm3, well
under the clinical detection threshold). In the absence of lymphocytes
k represents the fraction of tumor cells that block the flow of lympho-
cytes to the region occupied by the tumor. From this, we make an initial
appreciation of k ≃ 1.2 · 10−2 days−1.

• F (immunotherapy peak dose)
w (immunotherapy dossage frequency)
We will consider dosage frequency within a wide range from fractions of
day to months based on protocols for IL-2 and IFN-alpha administration
found in the literature. The peak dose F (taken as the increase in the flux
of lymphocytes towards the tumor) is more difficult to estimate and we
will assume a peak capable to double the flux of lymphocytes (that is, of
the order of u).

All these estimates are in good agreement with particular values collected from
other models in the literature (see de Pillis et al. (2005) and references therein).
In particular, the characteristic time of the system tc, with respect to which
adimensionalization is performed, ranges from 30 to 1000 days. The estimated
values of the corresponding dimensionless quantities are summarized in table 1.

min max typical

α ∼ 10−2 ∼ 1 1
κ ∼ 10−2 ∼ 10 0.3
σ ∼ 10−2 ∼ 103 0.5
τ ∼ 10−3 ∼ 102 1
x0 ∼ 10−3 ∼ 102 0.1

Table 1: Ranges for the orders of magnitude of the dimensionless parameter
values of equation (3) as well as initial condition for tumor cell population. In
the last column, the typical values used in the simulations reported in this work.

4 Results without therapy

As usual, in this model two fixed points of the dynamics exist corresponding to
the clinical situation of tumor regression towards a tumorless state and also that
of a dormant tumor, in which an equilibrium is established between the tumor
growth and its control by the immune system. Related to this last state are
tumor remissions; these are periodic tumor outgrowths immediately controlled
by an immune system acute reaction (Steel, 1993; Kuznetsov et al., 1994).
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The linear stability analysis of the non-delayed, non-stimulated system, per-
formed by Sotolongo-Costa et al. (2003), identifies the positions of these two
critical points together with their stability conditions. The results are summa-
rized in what follows.

Tumorless state: L0 = (0, ασ)

• stable (node), σ > 1

• unstable (saddle), σ < 1 (E1)

Controlled growth state (or dormant tumor): L1 =
(

1−σ
α−κ , α

)

• unstable (saddle), if κ
α > σ > 1 or σ > κ

α > 1 (E2)

• stable (node or focus), if κ
α < σ < 1 (E3)

• unstable (node or focus), if σ < κ
α < 1 (E4)

An analogous analytical study for the delayed system (but without immune-
stimulation with cytokines) can be performed using current techniques of delay
differential equations (Hale, 1977; Gopalsamy, 1992; Beretta and Kuang, 2002)
concerning changes in the stability of the solutions of the nondelayed system
(see appendix for the detailed proofs of the following afirmations). The main
results are as follows:

Tumorless state L0: remains stable or unstable for any dimensionless delay
τ , so (E1) remains valid for any τ ≥ 0.

Controlled growth state (or dormant tumor) L1:

• remains unstable for any τ ≥ 0 in the condition of (E2)

• becomes unstable for some critical value τc of τ in the conditions of
(E3)

• remains unstable for any τ ≥ 0 in the conditions of (E4)

Figure 1 shows the effects of this delay induced instability. It can be seen there,
that this τc(α), which destabilizes L1, involves the appearance of a stable limit
cycle, resembling much the tumoral remissions. This behavior is similar to the
one described in (E4) of the nondelayed system, however the global behavior
there was unstable: the x − y cycles increased their amplitude and eventually
ended in the suppression of the lymplocytes. Now, however, the limit cycle
is stable and the cycles can last forever with constant amplitude. Moreover,
there exists a second critical delay τc2(α) for which the limit cycle stability is
lost eventually arriving to a state of complete immunosupression. This value
has been obtained numerically (using the same method and assuming the same
initial conditions explained in the next section 5).

On the other hand, figure 2 shows the critical value of τ for which the
controlled growth state, L1, becomes unstable, as a function of the parameter
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Figure 1: (a) Temporal evolution of tumor population, and (b) phase portrait
for different delays (τ = 0.3, 0.6, 1.0, 1.2), for initial conditions x0 = 0.1 and
y0 = 0.5. Other parameter values are taken as α = 1, σ = 0.5, κ = 0.3.
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α. These values of τc(α) can be computed analytically (see the appendix, or
also the original work of Beretta and Kuang (2002); Villasana and Radunskaya
(2003)) within the range of parameters for which L1 has positive abscissa and
where L1 is stable for τ = 0. In figure 3 it is also shown that τc2(α) > τc(α)
which marks the end of the existence (for the particular initial conditions x0, y0

of figure 1) of the limit cycle, which ends in total immunosupression.
We must emphasize that the delay τ does not affect the stablity of L0,

its nature being determined by the same previous condition (E1) on σ. In
particular, the limit cycle behavior around L1 takes place when L0 is a saddle
point, and is embraced by a homoclinic trajectory departing and ending at this
latter point; this structure is usually called a “saddle-loop”.

5 Results with delay and therapy

With the introduction of the immunotherapy term, system (3) cannot be studied
analytically in a simple manner. Following Sotolongo-Costa et al. (2003) we
perform numerical integration of (3) and explore the values of β and τ for
which, values of the other parameters fixed, the system behaves as stable or
unstable with respect to the size of the tumor.

Numerical integration has been performed using the steps method (Driver,
1977). The method requires the storage of the values of x and y at least from
t−τ up to t and the precise value in t−τ has been computed using a simple linear
interpolation between the two nearest values. Integration has been carried out
up to a time tmax corresponding to a real time of around 10 years (from typical
values estimated in 3, it can be obtained tmax ∈ [30, 103]; we will consider
tmax = 100 dimensionless time units in what follows). However, whenever the
condition y ≤ 0 is met, that is, when the immune system becomes annihilated
due to tumor aggressiveness, integration stops before t = tmax.

As a realistic initial condition for the integration of the delay system we
take that corresponding to an exponentially growing tumor, and an unaware
immune system (τ -delayed response), i.e., x(t) = x0(0)eα(1−σ)t, y(t) = ασ,
in t ∈ [−τ, 0). This simplifying election allows us to determine the initial
conditions just giving x0(0).

Integration of (3) with these initial and stop conditions (y > 0 and t < tmax)
classifies the (β, τ) plane into two regions: (asymptotically) stable and unstable.
However the unstable region can be divided in subregions depending on the time
to immunosupression. We call them metastability regions, i.e. where the growth
is controlled up to a certain large enough time. Examples of these behaviors are
depicted in figure 4 for some representative pairs (β, τ), and are summarized
in figure 5. Although this “phase diagram” outlined in terms of the stability
outcome is not the usual mathematical representation, we will use it as a simple
means to depict the “prognostic” information of our model. Thus its medical
interpretation in the discussion will be clearer.

The region marked as“asymptotically stable” in figure 5a denotes those cases
where the tumoral size is kept controlled by the cytokine treatment for an arbi-
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Figure 2: L1 stability regions for different values of (a) κ, around 0.30 (with fixed
σ = 0.5) and (b) σ, around 0.5 (with fixed κ = 0.30), within the physiological
estimated range. These regions are delimited by the graph of the function
τc(α), the critical delay above which the critical point L1 of system (3) becomes
unstable (for V = 0: no immunological treatment). Parameter values were taken
such that the system is stable for τ = 0 and α > κ/σ (the range of stability
without the delay).
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Figure 3: L1 stability region (below solid line, representing the graph of τc(α))
and limit cycle existence threshold (below dashed line). V = 0, i.e. no immuno-
logical treatment is considered.

trarily long time. The one marked as “unstable” denotes, for the chosen values
of the parameters, those values of the frequency β and the delay τ for which the
system becomes unstable in a finite time, smaller than a reasonable treatment
time, leading to immunosuppression and eventually to unlimited tumor growth
(Sotolongo-Costa et al., 2003). The metastable region of 5b corresponds to un-
stable states where instabilities (i.e. immunosupression) manifest themselves
after a given time shorter than tmax, but long enough to allow for an external
intervention, and hence they are indicative of the short term immunotherapic
success.

We want to point out that the limit between the metastable region and the
unstable one in figure 5b depends not only on the time cutoff, but also on
the initial conditions (x0, y0, as well as on the hypotheses about their history)
used to initialize the numerical calculation, and on the degree of instability
determined by the values of the other parameters. In fact there can be seen
“islands” of more unstable states within the region marked as metastable. This
sort of islands are produced by the interplay between treatment dossage and the
proper limit cycle dynamics.

6 Discussion and Conclusions

We have studied the effect of the immune response time delay on cancer tumor
growth. This delay is introduced, following Asachenkov et al. (1994); Galach
(2003), to approximate missing dynamical components such as the chemical
signal and B-lymphocytes mediated maturation and activation of (T-)lympho-
cytes, and is a body characteristic time. It can be estimated, together with
other particular dynamical system parameter values, as shown in section 3,
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Figure 4: Tumor population temporal evolution for different pairs (β, τ) to
illustrate the effect of the dose period, as well as the delay of the immune
system response. The values of the other parameters in all cases are: κ =
0.3, σ = 0.5, α = 1, V = 0.5, all of them within the physiological range
estimated in section 3. The initial conditions were taken as x0 = 0.1, y0 =
σα = 0.5. Values of β = 0.2, 0.3, 0.4 are taken along τ = const. lines with and
without (meta)stability change with β . In particular: (a) τ = 1.25 changes
from metastable to asymptotically stable, (b) τ = 2.5 changes from metastable

to asymptotically stable, and (c) τ = 3.5 changes from metastable to unstable.

12



(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

    =1.0,     =0.5
    =0.8,     =0.5
    =1.0,     =0.4

σ
σ
σ

α
α

α

τ

β

Asymptotically stable

Unstable

(b)

 1

 1.5

 2

 2.5

 3

 3.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

β

τ

Figure 5: (a) Stability (β, τ) portrait for different values of α and σ, showing
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(the smaller, i.e. the more unstable, the darker). Also the continuous line marks
the limit of the marginally stable region. Constant gray profiles aparent from
the image (b) have the meaning of “survival isolines”.
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from available data.

Furthermore, the dimensionless form of the equations (3) reflects the exis-
tence of dimensionless groups (or “cancer indexes” as σ or κ/α, so common in
other branches of the medicine), which capture the essence of the dynamics,
and are thus more suitable to describe and classify treatment outcomes. These
dimensionless groups that describe qualitatively the dynamics, have the mean-

ing of relative magnitudes. For instance, σ = u/f
a/b is the ratio of the number

of “non specific” effector cells around the tumor, previous to the moment of its
detection by the immune system (u/f), to the number of effector cells needed
to stop tumoral growth at any time (a/b). It is evident now the meaning of the

stability condition σ > 1. Similarly, when we write κ/α = k/d
a/b , it is read as the

ratio of the number of lymphocytes around the tumor needed to compensate
the local immunodepression caused by cancerous cells (k/d), to the number of
effector cells needed to stop tumoral growth (a/b). Even in the case when a
patient has σ < 1, there is a chance of tumor control if k/d < u/f because there
are still activated effector cells left to fight cancer.

The destabilizing effect of the inherent delay τ is responsible of the appear-
ance of controlled tumor remission and, as it becomes larger, of the eventual
anihilation of the immune system, as shown in figures 1 and 2. It is informative
to rewrite this delay in terms of the original dimensional parameters, τ = T

√
af ,

as well as α =
√

a/f . It becomes apparent then, that an increase in lympho-
cyte mortality (∼ f) or an increase in cancer malignancy (∼ a) may lead from
a controlled growth situation (stable or controlled around L1) to a periodic tu-
mor remission or, upon further deterioration, to immunosupression, as shown
in figure 3. Figure 2, also shows the effects that the variation of parameters
κ (immunodepression) and σ (constant flux of lymphocytes from the immune
system) have on these thresholds. This is more dramatic for α & κ

σ , that is, for
slightly stable systems.

When immunotherapy is considered, the analysis of the solutions of our
model classifies cancer situations into stable/curable (that is controllable by the
stimulated immune system) and unstable (those which cannot be controlled by
the stimulated immune system) in terms of the delay (τ) and dossage (β−1)
characteristic times. However, we have also included in our classification those
metastable states which can be kept controlled for a time in which another
treatment (radiotherapic or surgical procedure, for instance) can be applied. In
both metastable and asymptotically stable conditions, immunotherapy does not
lead to the annihilation of cancer cells, but keeps tumor size in a controlled
state, allowing for another therapeutic approach.

For a fixed time delay τ (patient dependent) an increase of the dossage fre-
quency β usually stabilizes tumor growth. This is observed as an initial gradual
increase of the survival time, that ends in a fast transition to the asymptotically
stable region. These survival times are schematically depicted in figure 5b as
a grey-map from which “survivance isolines” can be obtained. However, there
exists a threshold τ -delay for which β variation alone is not enough to control
tumoral growth. Thresholds and isolines will change as α and σ are varied, as
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can be seen in figure 5a. A larger σ (stronger immune system) will increase
the limiting τ (will raise the threshold β → ∞ asymptote), and an increase of
α will decrease the lower stabilizing β (for a fixed τ). However the qualitative
behavior just described will remain valid.

Our investigation has dealt with the effects of the immune system response
time (represented by τ in this work) on the temporal evolution of a tumoral mass
with and witout immunotherapic stimulation. The model employed considers
the simplest models of tumor growth, tumor-immune system interaction, im-
mune response delay, immunodepression and immunotherapic treatment. These
simplest models also involve the minimum number of parameters to be esti-
mated. The mathematical analysis has evidenced the existence of several di-
mensionless parameters or “cancer indexes” that, in turn, suggest a new quan-
titative way to evaluate clinical history records and define new criteria about
the suitability of immunotherapy, based on a given patient immunological state
characterized by the σ, κ/α and τ defined in this work.
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A Stability analysis of the delayed system (3) without therapy

(V = 0)

Proposition 1: The stability around the steady state L0, does not change with
the inclusion of the delay.

Proof: Around L0 = (0, ασ), the associated variational lineal system (Hale,
1977) is

x′(t) = α(1 − σ)x(t)
y′(t) = ασx(t − τ) − κx(t) − 1

αy(t)

whose characteristic equation is

D(λ, τ) =

∣

∣

∣

∣

λ − α(1 − σ) 0
κ − ασe−λτ λ + 1

α

∣

∣

∣

∣

= 0

having the same eigenvalues as in the non delay case

λ(L0) =

{

α(1 − σ)
−1
α

Then it follows that the stability of the solution around L0 remains the
same as in non delay case. ⊳
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Proposition 2: When σ > 1, the solution keeps its unstable behavior around

L1 =
(

1−σ
α−κ , α

)

, for every τ > 0.

Proof: The associated variational linear system and the characteristic equation
have now more complicated expressions.
The system linearized around L1 becomes

x′(t) = − 1−σ
α−κy(t)

y′(t) = αx(t − τ) + 1−σ
α−κy(t − τ) − κx(t) − 1

αy(t)

whose characteristic equation that can be written as,

D(λ, τ) = M(λ) + N(λ)e−λτ = λ2 +
1

α
λ − κ

1 − σ

α − κ
+

1 − σ

α − κ
(α − λ)e−λτ

(4)
D(0, τ) = 1− σ < 0, under the assumption that σ > 1, the expression (4)
tends to ∞, when λ → ∞. Then for every τ > 0, there exists some λ ∈ R,
λ > 0, such that D(λ, τ) = 0. We can then conclude that, since there
always exists a positive eigenvalue, the delayed system remains unstable
around L1. ⊳

Proposition 3: In the range κ
α < σ < 1, of stable solutions around L1 for

the nondelayed system, there exists τi > 0, such as for every τ ≥ τi, the
delayed system solution becomes unstable around L1. For σ < κ

α < 1,
there exists no τ for which solutions around L1 change their stability.

Proof: We must prove that a stable state becomes unstable upon the introduc-
tion of the delay. We want to find the values of τ for which the stability
change takes place. Following the criterium exposed by Beretta and Kuang
(2002), we look for roots of (4) of the form λ = ıy.
For every y 6= 0 we can construct the function,

Φ(y) = |M(ıy)|2 − |N(ıy)|2 (5)

The necessary condition for the stability change is that Φ has some real
root, y ∈ R , and then we can apply the criterium. In our case,

Φ(y) = y4 + Ay2 + B = 0 (6)

where,

A = 2κx̃ +
1

α2
− x̃2 B = x̃2(κ2 − α2) x̃ =

1 − σ

α − κ

The sufficient condition for the stability change from the stable system

( κ
α < σ < 1) is that there must exist a positive root of (5) such as dRe(λ)

dτ >
0. We know that,

Sign

(

dRe(λ)

dτ

)

= Sign

[

Re

(

dλ

dτ

)

−1
]

(7)
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and following Beretta and Kuang (2002) we obtain,

sin yτ =
−MRNI + MINR

|N(ıy)|2 cos yτ = −MRNR + MINI

|N(ıy)|2 (8)

where
MR(ıy) = −(κx̃ + y2) MI(ıy) = y

α
NR(ıy) = x̃α NI(ıy) = −yx̃

Then, taking into account that when stability changes D(λ, τ) = 0, com-
puting implicitly the derivative dλ/dτ , and comparing it with dΦ(y)/dy ,
we obtain,

Sign

[

Re

(

dλ

dτ

)

−1
]

= Sign

[

1

y |N(ıy)|2
· dΦ(y)

dy

]

and finally, using (6) and the expression for the roots of Φ(y),

Sign

[

Re

(

dλ

dτ

)

−1
]

= Sign(Λ1/2)

where, Λ = A2 − 4B > 0, since B < 0 when κ
α < 1.

It can be immediately inferred that for y fulfilling (6), and in the range of
parameters for which the non delay system is stable ( κ

α < σ < 1), there
exists some τ > 0, such that the system becomes unstable. However, in
the range of parameters for which the system is unstable (σ < κ

α < 1), we
can see that there is no change of stability since (7) remains positive.
Let θ be a principal argument of yτ in [0, 2π]. Then we can find the values
of τ such that the system changes into instability from the equations (8).
These values are plotted in Fig. 2 as a function of α. Figure 2 shows the
threshold τc for which a solution around L1 becomes unstable. For delay
values above this threshold the system becomes unstable while for those
below τc solutions around L1 remain stable. ⊳
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