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During primary HIV infection the viral load in plasma increases, reaches a peak, and then
declines. Phillips has suggested that the decline is due to a limitation in the number of cells
susceptible to HIV infection, while other authors have suggested that the decline in viremia is
due to an immune response. Here we address this issue by developing models of primary
HIV-1 infection, and by comparing predictions from these models with data from ten
anti-retroviral, drug-naive, infected patients. Applying nonlinear least-squares estimation, we
"nd that relatively small variations in parameters are capable of mimicking the highly diverse
patterns found in patient viral load data. This approach yields an estimate of 2.5 days for the
average lifespan of productively infected cells during primary infection, a value that is
consistent with results obtained by drug perturbation experiments. We "nd that the data from
all ten patients are consistent with a target-cell-limited model from the time of initial infection
until shortly after the peak in viremia. However, the kinetics of the subsequent fall and
recovery in virus concentration in some patients are not consistent with the predictions of the
target-cell-limited model. We illustrate that two possible immune response mechanisms,
cytotoxic T lymphocyte destruction of infected target cells and cytokine suppression of viral
replication, could account for declines in viral load data not predicted by the original
target-cell-limited model. We conclude that some additional process, perhaps mediated by
CD8#T cells, is important in at least some patients.
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1. Introduction

During primary HIV infection, viral load in-
creases sharply during the "rst few weeks after
infection and then declines rapidly, ultimately
reaching a quasi-steady state or set point level
?Author to whom correspondence should be addressed.
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(Daar et al., 1991; Schacker et al., 1996; Kahn
& Walker, 1998; Kaufmann et al., 1998). Phillips
(1996) suggested that the sharp decline in virus
concentration might be the result of target-cell
limitation, i.e., the running out of new cells for the
virus to infect. Phillips demonstrated that simula-
tions of a simple model based on this assumption
produce a &&spike'' in virus concentration
( 2000 Academic Press



FIG. 1. Representative virus concentration time history.
The time of initial infection is unknown so the point labeled
t"0 is arbitrary.
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qualitatively similar to that observed in patients.
Another explanation for the viral decline is that
an anti-viral immune response, for example, the
cytotoxic T cell response (Koup et al., 1994;
Rinaldo et al., 1995; Riviere et al., 1995; Pantaleo
et al., 1997; Matano et al., 1998; Schmitz et al.,
1999), brings the viral load in check. The question
of whether the drop in viral load is primarily the
result of an anti-viral immune response or
target-cell limitation has yet to be answered
satisfactorily.

This issue is addressed here by developing dy-
namic models of the events that occur during the
"rst 100 days following primary HIV-1 infection,
and comparing model predictions with clinical
data. Models of primary infection have also been
developed by Phillips (1996), Nowak et al.
(1997a) and Murray et al. (1998). In addition,
numerous models have been proposed to capture
many of the features of progression to AIDS
following the initial viral spike (Reibnegger et al.,
1989; Hraba et al., 1990; Nowak et al., 1990;
McLean & Kirkwood, 1990; Nowak et al., 1991;
McLean & Nowak, 1992, Perelson et al., 1993;
Essunger & Perelson, 1994; Schenzle et al., 1994;
Stilianakis et al., 1997; Kirschner et al., 1998).
A comprehensive model*one capable of predic-
ting the spike, the asymptomatic phase, and pro-
gression to AIDS*is ultimately desired, but
much can be learned by studying the early events.
The characteristic spike in viral load provides
a distinctive landmark against which di!erential
equation models can be validated.

Figure 1 depicts the virus concentration in
a representative HIV-positive patient studied at
the Aaron Diamond AIDS Research Center.
A viral spike similar to the one shown in Fig. 1
occurs in all ten patient data sets investigated.
Our goal is to account for the initial rise, sub-
sequent fall and stabilization of the virus concen-
tration at a set-point level. To accomplish this,
nonlinear least-squares estimation is applied to
a simple target-cell-limited model of HIV-1 infec-
tion to determine parameters associated with
each of the ten patient viral load data sets. We
"nd that modest variations in the parameters of
the model are capable of mimicking the wide
patient-to-patient variation in the rise and initial
decline in viremia. Following the initial decline,
however, we "nd that the viral load in many
patients falls below the quasi-steady-state viral
load predicted by this model. We document this
pattern, then explore two widely discussed
methods of immune control that could account
for the discrepancies*increased rate of killing of
productively infected cells by cytotoxic
T lymphocytes (CTLs) and suppression of viral
production by CD8#T cell antiviral factors
(CAFs).

2. Parameter estimation

2.1. PATIENT DATA

Virus concentration measurements in peri-
pheral blood from ten patients (Table 1) were
obtained from three labs and used in parameter
estimation. Data for patients 1 and 2 were from
a University of Washington study (Schacker et
al., 1996), data for patients 3}9 were provided by
the Aaron Diamond AIDS Research Center, and
patient 10 data were provided by the Cedars-
Sinai Medical Center in Los Angeles, CA.

Specimens were taken only after patients pre-
sented with acute infection symptoms, so baseline
values of viral load are not available. The times in
Table 1 for patient 1 are estimates of days since
initial infection based on an average between the
time of a recent HIV-negative sample and the
"rst HIV# sample. For patients 2 and 10 the
times are measured from onset of symptoms,
while for patients 3}9 they are taken from "rst
date of data collection. Except for one patient,
the time between initial infection and the time of
the "rst data point is unknown and must be
estimated. We discuss below how we estimated



TABLE 1
<irus concentration data

pt 1 pt 2 pt 3 pt 4 pt 5 pt 6 pt 7 pt 8 pt 9 pt 10

22, 27.2 3, 469.8 0, 766.8 0, 153.0 0, 228.2 0, 939.26 0, 1350.6 0, 2217.7 0, 216.4 4, 8057.2
43, 210 11, 1600 7, 947.6 5, 284.0 2, 599.2 3, 1485.0 4, 2398.6 4, 2427.9 5, 355.2 9, 9622.8
78, 85.9 15, 42.8 9, 706.2 6, 216.0 6, 2617.4 8, 701.6 9, 337.2 7, 2200.4 8, 355.4 10, 7830.0

106, 81.1 43, 41.7 15, 14.4 14, 143.0 14, 169.6 10, 564.0 12, 340.6 11, 1134.3 12, 146.8 14, 715.81
* * 29, 2.3 21, 30.2 21, 93.7 15, 106.5 16, 202.3 14, 705.9 19, 100.9 16, 213.79

146, 46.2 71, 12.22 36, 1.1 32, 6.4 42, 165.6 17, 11.2 19, 169.7 18, 447.8 29, 34.7 18, 121.03
183, 60.1 99, 14.17 50, 1.0 39, 4.1 * 22, 87.3 23, 141.4 21, 412.7 57, 11.4 28, 16.36
230, 82.8 129, 18.2 57, 1.8 46, 5.85 98, 127.0 24, 20.6 26, 56.48 26, 302.1 * 30, 11.79
268, 103. 197, 70.8 64, 2.1 203, 65.9 29, 14.78 30, 182.75 29, 118.8 121, 17.3 35, 31.75
358, 72.1 255, 16.3 329, 144.7 36, 27.5 50, 267.0 33, 248.8 197, 90.1 42, 24.05
435, 79.4 330, 81.2 * 60, 182.7 36, 173.6 280, 68.2 51, 16.257
489, 70.4 64, 6.32 * 40, 131.3 376, 55.3 *

519, 207. 273, 2.27 213, 186.3 49, 259.1 525, 94.5 84, 19.59
534, 42.6 288, 5.64 551, 89.4 * 604, 34.4 177, 41.17
584, 10.8 347, 14.55 56, 132.24 645, 61.7 211, 61.95
610, 54.2 430, 13.6 63, 103.2 757, 55.9 239, 137.77
687, 22.3 478, 13.1 75, 117.1 776, 52.7
778, 40.8 547, 5.62

659, 24.24

Note: Data points are presented as ordered pairs with "rst number in each entry representing a relative time in days and the second number in
each entry the virus concentration in thousands of HIV-1 RNA copiesml~1. A horizontal line in a column indicates only the data points above the
line were used in parameter estimation. All points were used if there is no horizontal line. The times listed for patient 9 are from 35 days following
initial infection (Borrow et al., 1997). Patients (pt) 1 and 2 are patient numbers 1019 and 1113 from University of Washington study. Patients 3}9
are JSW-DAAR, CMO-DAAR, HOBR-SHAW, SUMA-SHAW, BORI-SHAW, INME-SHAW, and WEAU-SHAW from Aaron Diamond AIDS
Research Center, respectively. Data for patient 10 are from patient DR from the Cedars-Sinai Medical Center in Los Angeles, CA.
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the time shift, then use the time-translated data in
subsequent graphs and discussions. Thus, for
each patient the data in Table 1 will be translated
forward in time by an amount q.

The exact date of initial HIV-1 infection is
known for patient 9 (Borrow et al., 1997; Clark et
al., 1991). Values of time reported by Borrow et
al., begin 15 days following onset of symptoms,
which according to the patient, and corroborated
by his sexual partner, was 20 days following in-
itial exposure. Consequently, the data in Table 1
for patient 9, when translated forward 35 days
re#ect the actual rather than the estimated time
following initial infection.

2.2. NONLINEAR LEAST-SQUARES PARAMETER

ESTIMATION

We "t the data using a system of equations that
include activated CD4#T cells (¹ ), productively
infected CD4# T cells (¹*), and virus concen-
tration (<):
d¹(t)
dt

"j!d¹!k¹<, ¹(0)"¹
0
,

d¹*(t)
dt

"k¹<!d¹*, ¹*(0)"¹*
0
, (1)

d<(t)
dt

"n¹*!c<, <(0)"<
0
.

This form of the target-cell-limited model has
been used in other studies (Nowak & Bangham,
1996; Nowak et al., 1997a; Bonhoe!er et al., 1997)
and represents a minimal extension of models
used to analyse drug perturbation experiments
(Ho et al., 1995; Wei et al., 1995; Perelson et al.,
1996; Perelson & Nelson, 1999), which have typi-
cally included only productively infected cells
and virus concentration. The model lacks resting
uninfected cells and latently infected cells, which
have been included in other target-cell limited
models (Perelson, 1989; McLean et al., 1991;
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Essunger et al., 1994; Phillips, 1996; DeBoer &
Perelson, 1998). We ran numerous simulations
using such models, but found that predicted viral
load dynamics over the "rst 500 days did not
di!er appreciably from results obtained using
eqn (1).

Here we only consider the primary targets for
productive infection, activated CD4#T cells
(Schnittman et al., 1990). While all cells bearing
the CD4 molecule, such as T cells, dendritic cells
and macrophages, are susceptible to infection, it
has recently been found that more than 90% of
productively infected cells in lymph tissue during
primary infection are CD4#T cells (Haase, 1999;
Zhang et al., 1999). It is possible for HIV to enter
a resting cell, however direct infection of resting
cells has been reported to be very ine$cient due
either to lack of full reverse transcription of viral
RNA (Zack et al., 1992) or lack of integration of
the reverse transcribed DNA into the host cell's
DNA (Stevenson et al., 1990). Surprisingly,
Zhang et al. (1999) found that early infection is
not only propagated in activated and proliferat-
ing T cells, but also in resting T cells. A slight
modi"cation of our model would allow infection
of resting cells but here we report results based on
infection of only activated CD4#T cells.

Activated cells are generated by activation of
resting cells. As an approximation, the rate of
their generation is assumed to be constant, with
j cells being produced per unit volume per unit
time. A net loss of activated cells proportional to
their number density is assumed to occur with
rate constant d and represents the di!erence be-
tween loss from cell death and gain due to cell
division. We assume that activated cells become
infected at a rate proportional to the product of
activated cell density and virus concentration
with rate constant k, and that productively infec-
ted cells die with rate d per cell. Productively
infected cells are assumed to produce virions at
an average rate of n per cell and virus is cleared
with rate constant c.

Assuming that target cells are proliferating
cells, we "x the density of target cells before
infection, ¹

0
, at 1% of the CD4#T cell density

in peripheral blood. This value is based on stud-
ies using the nuclear antigen Ki-67 (Sachsenberg
et al., 1998) that found the percentage of pro-
liferating CD4# T cells in the peripheral blood
of healthy controls to be 1.1$0.6%. We assume
there are no infected cells initially, so ¹*

0
is set to

0. We take the initial viral load, <
0
, to be 10~6

virionsml~1 to represent the presence of a small
number of virions present following primary in-
fection. The exact value for <

0
is not critical since

numerically it was found that varying <
0

over
two orders of magnitude resulted in nearly identi-
cal virus concentration graphs except for a di!er-
ence of less than 6 days in the predicted time to
the viral peak. Thus, <

0
and the estimated trans-

lation time of the data, q, will play o! against
each other. Before infection, we assume prolif-
erating CD4#T cells are at equilibrium, i.e.
j"d¹

0
. Hence, we need not estimate j separate-

ly. We also accept the estimate from earlier stud-
ies (Perelson et al., 1996) of the clearance rate
constant, c"3 day~1, although somewhat high-
er values may be more appropriate (Mittler et al.,
1999; Ramratnam et al., 1999). We show in the
Appendix A that the behavior of the model de-
pends on certain parameter products and ratios.
Thus, for example, choosing a higher value of
c will cause us to estimate a higher value of n. In
the parameter range of interest, the model's be-
havior is only sensitive to the value of n/c. Sim-
ilarly, choosing a di!erent initial level of ac-
tivated cells, ¹

0
, can be compensated for by cha-

nges in n.
With assumed values for ¹

0
, ¹*

0
, <

0
, and c, we

now estimate the remaining "ve parameters, d, k,
d, n, and q for individual patients by minimizing
the objective function

J(h)"
1
n

n
+
i/1

(log<(t
i
)!log<K (t

i
) )2, (2)

where n represents the number of data points
selected to estimate the vector of parameters,
h"[d, k, d, n, q]T, <(t

i
) represents the virus

concentration at time t
i
predicted from the solu-

tion of eqn (1), and<K (t
i
) represents the data value

at time t
i
with all times in the data set having

been shifted by q.
Di!erences in logarithms, as opposed to di!er-

ences in actual values, are used in forming the
objective function to accommodate the large dif-
ferences between the peak values and quasi-
steady-state values after the peak. This approach
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minimizes the sums of the squared logarithms of
ratios of data values to simulation values and,
hence, weights ratios of small data values equally
with those of large ones. Using actual values
resulted in a good "t of the peak itself, but in
some cases this approach gave unrealistic values
for the parameters and poor agreement during
the times following the peak.

In all but one case we do not know the true
value of the time shift, q, of the data sets. For
most of our patients, the time shift between initial
infection and the "rst data point given in Table 1
can be expressed as the sum of two terms,
q"q

S
#q

C
, where q

S
represents the time from

initial infection to the onset of symptoms and
q
C

is the time between onset of symptoms and the
collection of the "rst viral load data. This is not
applicable for patient 1, however, whose times
are direct estimates from the date of initial infec-
tion based on the average time between a recent
HIV-1 negative sample and the "rst HIV-positive
sample. Thus, for patient 1, q"0. The times for
patients 2 and 10 were reported from the onset of
symptoms, so q

C
"0 in these two cases. The times

for patients 3}9 are from the day of initial collec-
tion of HIV-1 RNA data, so the time shifts for
these patients contain both components.

Estimates of q
S
for 12 patients were reported by

Schacker et al. (1996) with a range from 5 to 30
days. In addition, a value of q

S
"20 days was

reported for patient 9 (Borrow et al., 1997). Using
the 12 reported values in Schacker and the value
of 20 days reported for patient 9, we "nd a mean
of 13 days from initial infection to onset of symp-
toms. Included in these estimates is the variability
inherent in the time from initial transmission to
when infectious virus "rst encounters target cells
and infection takes o!. Stochastic models during
this early phase have been investigated by Merrill
(1989). Other sources of variability include the
replication and clearance rates of the virus.

Several factors enter into the value of q
C
*se-

verity of symptoms, the time required for the
patient to obtain an appointment to be seen by
a physician, and whether a blood sample was
taken on the "rst or a follow-up visit. Often the
time from onset of symptoms to "rst collection is
only a few days*patient 2 and patient 10, for
example, had their "rst collection 3 and 4 days,
respectively, following onset of symptoms. Some-
times, however, there was a lengthy period be-
tween "rst symptoms and data collection, such as
for patient 9 whose reported q

C
was 15 days

(Borrow et al., 1997). We take 7 days as a repre-
sentative value for q

C
which, combined with the

mean of 13 days for q
S
, yields a time shift of

q"20 days which we apply to all patient data
sets with the following exceptions. No time shift
is applied to patient 1 as the times already repres-
ent estimates from day of initial infection. The
shift for patient 9 is known exactly, as discussed
above, so we use a shift of q"35 days. Patient 10
reported having exposure 7 days prior to the
onset of symptoms and although transmission
could have occurred in a previous encounter, the
high peak in viral load for this patient would be
consistent with a short time from transmission to
onset of symptoms. Consequently, we set q"7
days for patient 10.

We summarize the parameter estimates for d,
k, d, n, and J for all patients (Table 2), though our
values are not unique in light of the dependencies
discussed in Appendix A. Figure 2 compares the
predictions of the simpli"ed model [eqn (1)], us-
ing the best-"t parameter values given in Table 2,
with the time-shifted data for each of the ten
patients. The "gure illustrates the good agree-
ment of the theory to the data with these para-
meter choices.

Using the default of q"20 days can introduce
inaccuracies in the other parameter estimates.
Since the major source of variability in estimating
each patient's parameters is probably the time of
initial infection, we assessed this e!ect by estima-
ting parameters using q"10 and 30 days. The
estimates for d at q"10 and 30 days were on
average 40% lower and 52% higher, respectively,
than the values for q"20 days. Similarly, the
estimates of k were 130% higher and 39% lower
than the estimates at q"20 days. The variations
in d were less*11% lower at q"10 days and
30% higher at q"30 days. The production rate
coe$cient, n, was the only parameter whose esti-
mates were not consistent in the direction of
deviation from the 20-day estimate. The esti-
mates at 10 days ranged from 50% higher to 30%
lower than the estimate at day 20, while 6 of 7
estimates at day 30 were higher. The highest
estimate at day 30 for n was 60% above the day
20 estimate.



TABLE 2
Estimated parameter values for patients 1}10

Patient d k d n J
(day~1) (ll virion-day~1)]10~3 (day~1) (virion day~1)

1 0.013 0.46 0.40 980 0.046
2 0.020 0.36 0.80 1800 0.087
3 0.0065 0.64 0.43 960 0.050
4 0.0046 4.80 0.18 98 0.017
5 0.017 0.63 0.39 870 0.017
6 0.012 0.75 0.39 790 0.088
7 0.017 0.80 0.31 730 0.019
8 0.0085 0.66 0.17 830 0.0098
9 0.006 2.50 0.13 110 0.0033

10 0.0043 0.19 0.46 7100 0.063

Median 0.01 0.65 0.39 850 0.032
Sample SD 0.0057 1.4 0.19 2000 0.032

Note: Due to dependencies among parameters in the model (discussed in Appendix A) and an
inability to estimate the time shift precisely, we present these estimated values only to summarize our
"ndings. All estimates were performed using the program Adapt II (D'Argenio & Schumitzky, 1997).
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We display median values for parameter esti-
mates since there appear to be some extreme
values in this small data set. For example, patient
9 was a rapid progressor (Borrow et al., 1997) and
the associated parameter estimates may be atypi-
cal as this patient's k is nearly the highest and his
d is the lowest of all the patients. It is unclear
whether there is biological signi"cance to these
extremes, but it would be interesting to compare
with estimates from other rapid progressors. Pa-
tient 10 is also atypical in that the estimate for k is
the lowest and n the highest over all patients.
Since, as shown in Appendix A, there is a family
of parameter estimates associated with n and the
initial value of target cells, ¹

0
, the very high value

of n may be more a re#ection of this patient
having more target cells. For example, if ¹

0
were

70 cells ll~1 rather than 10 cellsll~1 as assumed,
the estimate for the viral production rate n would
be 7100/7"1014 virions day~1, a value much
more in line with the other patient estimates.
Similarly, as discussed in Appendix A, a higher
viral production rate coe$cient would be pre-
dicted by our method if the viral clearance rate
constant, c, were lower in this patient than
normal.

The predicted steady-state values of produc-
tively infected cells, ¹*

ss
, and viral load, <

ss
, are

given in the second and third columns of Table 3.
Eigenvalues of the approximate linear system,
linearized about the steady-state solution, were
found to have negative real parts (results not
shown) assuring locally an asymptotically stable
"xed point. The basic reproductive ratio, R

0
,

which represents the average number of new in-
fected cells resulting from a single infected cell
before any depletion of target cells (Bonhoe!er et
al., 1997), is provided in column 4. Virus concen-
tration is growing exponentially during the initial
rise, and we have tabulated the associated doubl-
ing time, ¹

2
, in the last column of Table 3. The

formulas used to compute ¹*
ss
, <

ss
, R

0
, and ¹

2
are

taken from Bonhoe!er et al. (1997):

¹*
ss
"

j
d
!

dc
kn

, <
ss
"

nj
dc

!

d
k
,

R
0
"

knj
cdd

, ¹
2
"

ln 2
d(R

0
!1)

.

3. Immune responses

We shall show that when patient data are
examined over periods longer than 100 days after
infection, the target-cell-limited model fails to
explain the data in many patients, with the viral
load falling below the prediction. However, by
including immune response mechanisms the data
can be explained.



FIG. 2. Theoretical curves using estimated parameters vs. observed viral load data (r) for all patients. Time values of the
data points di!er from those in Table 1 since all data sets have been translated in time as described in the text.
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TABLE 3
Estimated steady state values of productively infec-
ted cell density (¹*

ss
), viral load (<

ss
), basic repro-

ductive ratio (R
0
), and doubling time (¹

2
)

Patient ¹*
ss

<
ss

R
0

¹
2(cellsll~1) (RNAml~1)]10~3 (days)

1 0.5 160 3.8 0.62
2 0.31 190 2.8 0.49
3 0.23 75 4.7 0.43
4 0.46 15 8.8 0.5
5 0.68 200 4.7 0.49
6 0.48 130 5.1 0.43
7 0.91 220 6.2 0.42
8 0.91 250 11. 0.42
9 0.77 27 6.6 0.94

10 0.17 400 9.6 0.17

Median 0.49 180 5.7 0.46
Sample SD 0.27 110 2.6 0.19
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3.1. LONGER-TERM PREDICTIONS VS. DATA

Comparing the predicted behavior over longer
intervals with the data (Fig. 3), we "nd that only
some patients' viral loads are consistent with
theoretical curves using short-term estimates of
parameters. This appears to be the case for pa-
tients 1, 5 and 7. For example, patient 1's viral
load following the peak declines at day 146 to
a value that is approximately 30% of the steady-
state value prediction based on only the "rst four
data points, but there is a steady upward trend
with the data point at day 268 reaching 65% of
the predicted steady-state value. Patient 5's viral
load drops only slightly below the predicted
steady-state level (Fig. 3), then recovers. There
are no data available for patient 7 between days
76 and 229, but we see that the predicted level is
close to being attained by day 229.

Three patients were found to have statistically
signi"cant deviations from the model over longer
time periods. Patients 2, 6 and 10 had objective
function values more than "ve standard devi-
ations higher than the short-term objective func-
tion mean over all ten patients. Patient 2's HIV-1
RNA concentration (Fig. 3) drops after the peak
viremia to less than 10% of the steady-state value
predicted using the "rst four data points and by
one year is still approximately 40% of the pre-
dicted steady-state level. After the peak in viremia,
the viral load of patient 6 falls well below the
predicted steady-state level and remains below.
Again, the model does not adequately explain
viral load declines of this magnitude. Although
patient data through day 100 were used for most
patients, patient 8 data after day 69 were not used.
The reason for this exclusion is that the minimum
objective function value including these points was
approximately double the minimum value exclud-
ing the points. In Fig. 3 we see the data points
between days 76 and 95 fall below the theoretical
curve in a pattern consistent with patients 2, 6 and
10. The viral load of patient 10 falls well below the
predicted steady-state level, but during days
191}246 there is a steady-increase toward the
steady-state value predicted by the model.

Patient 9 (Fig. 3) is an exception to the general
trend. The "nal four points displayed were not
used in the parameter estimation, and although
the "rst point of these four agrees with the simu-
lation, the "nal three are above the predicted
steady-state value. This patient was atypical in
that he progressed to AIDS in less than 3 years
(Borrow et al., 1997), and thus unlike slower
progressors may not have had any protective
immune response arise or, alternatively, may
have had a particularly cytopathic strain of virus.

In cases where viral load declines substantially
after the peak, as is the case for patients 3, 6 and
10 (Fig. 2), the simple target-cell-limited model
predicts solutions that are highly oscillatory dur-
ing their approach to the steady-state (Fig. 3).
Minimum viral loads following the peak for these
three patients are approximately 1000, 11 000
and 12 000 HIV-1 RNA copiesml~1, respectively,
compared with predicted steady-state values of
75 000, 130 000 and 400 000 HIV-1 RNA co-
piesml~1 (Table 2). Insu$cient data exists in
these three cases to verify or refute the model's
predictions of the one to two order of magnitude
increases from the minima to the steady-state
levels, but such oscillatory behavior is not typi-
cally seen in data. Some additional HIV patient
data (Fig. 4) show that viral load does not always
rebound as the model would predict following
steep declines. (Although there were no data
points available to de"ne the peak for these pa-
tients, parameter values similar to those in Table
2 were used to generate theoretical curves shown
in Fig. 4.) The model's predictions clearly do not



FIG. 3. Theoretical curves over longer intervals generated with best-"t parameters estimated using data only from the "rst
100 days. Long-term data for patients 3 and 4 were not available. In some cases (patients 1, 5, 7) the prediction from the "rst
few points is consistent with data while in other cases (patients 2, 6, 10) the viral load is generally below the prediction. Patient 9
is atypical in that he rapidly progressed to AIDS (Borrow et al., 1997).
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agree with patient data in the region just beyond
the local minima at days 35 and 70, respectively.

On the other hand, viral loads of patients 1, 2, 5,
7 and 10 do return approximately to the steady-
state values predicted by the model (Fig. 3). Addi-
tionally, Nowak et al. (1997a) report two cases of
SIV-infected macaques whose SIV RNA levels
increase more than an order of magnitude



FIG. 4. Theoretical curves using estimated parameters compared with two additional data sets from Aaron Diamond AIDS
Research Center: VS (r) and MM (|). Although no data exist for these patients near the peak, approximate values to mimic
the rise and decline until the "rst local minimum in each case were determined. The target-cell-limited model does not appear
to be capable of matching these data sets.
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between 35 and 119 days post-infection. Compar-
ing this data with patient 3, the patient exhibiting
the most pronounced decline, we note that the
model predicts a rise of less than two orders of
magnitude from the lowest HIV concentration
value.

In summary, using longer-term data we "nd
signi"cant deviations in viral load in some pa-
tients from the target cell limited model's pre-
dicted values. Speci"cally, patients 2, 6 and 10
(Fig. 3) had signi"cantly lower viral loads as early
as 84 days following initial infection. Patients 1,
5 and 8 had viral loads slightly below the pre-
dicted values, and patient 7 showed no deviation
from predicted viral load (although there were no
data points between days 80 and 233). Only pa-
tient 9 had an increase above the predicted
steady-state value, the increase occurring 242
days following initial infection. To explain the
lower than predicted viral loads, we speculate
that some patients produce an immune response
capable of reducing viral burden. To explore this
possibility, we modi"ed our model to predict
what might happen if there were either HIV-spe-
ci"c cytotoxic T lymphocyte (CTL) activity or
suppression of HIV replication by cytokines such
as IL-16 (Maciaszek et al., 1997) or CAF (Mack-
ewicz et al., 1995).

3.2. MODELS OF TWO POSSIBLE IMMUNE RESPONSE

MECHANISMS

Typically immune responses are strongest
when antigen levels are high. Here, as a "rst
examination of the potential e!ects of an immune
response, rather than attempting to model the
full CTL response we simply assume that d, the
death rate constant of productively infected cells,
increases due to CTL-mediated cytolysis. The
increase is assumed to be dependent upon the
number of productively infected cells, which in
turn is proportional to the virus concentration.
Because the immune response takes time to de-
velop, we assume that CTL activity is not sub-
stantial until after the peak viremia is reached.
We make this assumption because several graphs
of patient data seem to indicate that abrupt cha-
nges from the simple model's predictions occur
most often as the viral load begins to climb for
a second time. A similar delay has been reported
in chimpanzee hepatitis B virus (HBV) infection
(Guidotti et al., 1999) where CD8#T cells did
not appear in signi"cant numbers until 16 weeks
after initial infection.

In our analysis, we use the parameter values
estimated over the "rst 100 days with the excep-
tion that we now model CTL-induced changes in
d with viral load as follows:

d"d
0
#d

1
(<) where d

1
(<)"G

0, t (t
1
,

f (t)<, t5t
1
,

The function f (t) is chosen to increase with time
over several days to mimic e!ector cell expansion
beginning at t"t

1
, and to decline gradually be-

ginning at t"t
2

simulating subsequent loss of
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e!ector cells. We selected the functional form

f (t)"
b

1#ie!(t!t
1
)/*¹

1
!

b
1#ie!(t!t

2
)/*¹

2
,

but other forms would likely give similar results.
The simple model [eqn (1)] does not accurate-

ly predict the viral load after day 75 for patients 2,
6 and 10 (Fig. 3). Incorporating a CTL response
as described above, we "nd (Fig. 5) that the model
FIG. 5. Theoretical curves with simulated CTL response
(solid curve), theoretical curve without simulated CTL re-
sponse (dashed curve), and data points (r) for patients 2,
6 and 10.
can now mimic patient 2 data between days 90
and 230. Using the same functional form for d, we
obtained similar results for patients 6 and 10 (Fig.
5). Patients 2 and 10 seem to lose the ability to
contain the virus as their viral loads increase
within a year of initial infection to nearly the
steady-state values predicted by the target-cell-
limited model. Patient 6, however, maintains a
low quasi-steady-state.

We set i"1#105b, *¹
1
"2.5 days and *¹

2
"15 days for all simulations, and summarize in
Table 4 the remainder of the parameter values
used in the function f (t). These parameter esti-
mates are not claimed to be unique and we have
not attempted to accurately determine their
values, since the point of this work was simply to
show that an immune control mechanism, such
as cytotoxic T lymphocyte activity, could mimic
the longer-term behavior in some patients. While
the function f (t) has su$ced for this purpose,
further work will be needed to elucidate an ap-
propriate quantitative description of the CTL
response.

The time variations in d, the death rate con-
stant of productively infected cells, shown in Fig.
6, demonstrate that a transient increase and de-
cline in the rate of killing of infected cells is
needed to explain the data for patients 2 and 10,
but a more permanent increase was needed to
explain the data for patient 6. The magnitudes of
the increases appear to require unrealistically
high values for d since estimates for this para-
meter typically range from around 0.2 day to 0.9
day~1 in drug perturbation experiments (Klener-
man et al., 1996; Wu et al., 1999).
TABLE 4
¹imes of onset (t

1
), decline (t

2
) and relative

strength (b) of the C¹¸ response as de,ned by the
function f (t)

Patient t
1

t
2

b
(days) (days) ll (virion-day)~1

2 60 65 0.09
6 50 ** 0.125

10 45 100 0.070

*Patient 6 viral load was maintained well below the
predicted steady-state value for more than 500 days, so no
decline in CTL response with time was modeled.



FIG. 6. Inclusion of a CTL response causes the infected
cell death rate constant, d, to change over time as shown
above for patients 2, 6, and 10.

FIG. 7. Theoretical curve for patient 6 incorporating
a crude model of cytokine-mediated viral suppression. The
production rate coe$cient, n, was reduced to 35% of its
value at day 70. If the change in n were made gradually then
the sharp peak at day 70 could be converted into a more
gradual change.

a time shortly following the "rst minimum in
viral load. This yielded results for patient 6 that
are similar to the data (Fig. 7). Interestingly, Jin et
al. (1999) found that increasing p about three-fold
gave reasonable agreement with viral load in-
creases observed in SIV-infected macaques after
they were CD8#T cell depleted.
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Another immune mechanism that has been
suggested (Walker et al., 1986; Mackewicz et al.,
1995; Jin et al., 1999) is that a soluble factor
produced by CD8#T cells partially inhibits the
production of virus particles by productively in-
fected cells. The identity of this factor is unknown
but Levy and co-workers have called it CAF,
CD8#T-cell antiviral factor (Mackewicz et al.,
1995). We crudely simulated this form of re-
sponse by reducing the virus production rate
coe$cient, n, to 35% of its original value at
4. Discussion

Although many complex processes occur dur-
ing the rise and fall in viral load following initial
HIV infection, we have shown that temporal cha-
nges in virus concentration observed early after
infection are consistent with the assumptions em-
bodied in the simple target-cell limited model
[eqn (1)]. Relatively small variations in para-
meters determined by the host (d) and parameters
determined by interaction between host and virus
(k, d, and n) can be used to account for the highly
diverse patient-to-patient viral concentration
transients observed during the "rst 100 days fol-
lowing primary infection.

We found a mean and median value of 0.37
and 0.39 day~1, respectively, for d over our ten
patients. These values are slightly less than the
population estimate of 0.47 day~1 obtained for
the "rst phase decay rate constant obtained by
Wu et al. (1999) in a drug perturbation study of
48 patients analysed using a nonlinear mixed-
e!ect model. Our estimate is consistent with
the mean value of 0.37 day~1 determined by
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Klenerman et al. (1996) using data from "ve dif-
ferent drug perturbation experiments, and slight-
ly lower than the "rst-phase decay rate constant
of 0.5 day~1 obtained by Perelson et al. (1996). In
a separate study, a mean of 0.38 day~1 for d was
observed in primary infection patients given
combination therapy a few days following onset
of symptoms (Little et al., 1999).

We are unable to validate our results for the
other parameter estimates as no conclusive, inde-
pendent estimates, other than for d, have been
published to date. Further, dependencies between
n and ¹

0
and between n and c, as shown in

Appendix A, imply that our estimates of n, c and
¹

0
are not unique.

Our results support, but do not conclusively
prove, that the initial decline in viral load is due
to target-cell limitation, as suggested by Phillips
(1996), rather than to a response by the immune
system. The model, which can be viewed as
a minimal extension of the two-equation model
widely used to interpret drug perturbation ex-
periments (Perelson et al., 1996; Perelson &
Nelson, 1999), is able to match the highly diverse
initial viral load transients by minor modi"cation
of parameters.

Three arguments are often given to support the
hypothesis of immune system control during pri-
mary infection. First, there is evidence of a tem-
poral correlation between an increase in CTL
precursor frequency and decline in viral load
(Koup et al., 1994). Second, an inverse correlation
between the steady-state level of plasma virus
and the number of e!ector CTLs has been ob-
served (Ogg et al., 1998). Third, Matano et al.
(1998) used anti-human CD8#monoclonal anti-
body to deplete CD8#T cells in macaques,
either a few days before or a few days after inocu-
lation with simian immunode"ciency virus (SIV).
Measurements of SIV concentration showed
marked increases in peak viremia as compared to
controls, suggesting that CD8#T cells are re-
sponsible for controlling the viral load.

These studies do not provide direct evidence,
however, that CTLs are causing the HIV-1 viral
load to decline from its early peak level. It may
well be that many cytotoxic cells are generated as
viral load increases and then, as viral load de-
clines, the antigenic stimulus diminishes and the
CTLs also decline. Thus, the temporal correla-
tion of CTL and virus as well as the inverse
correlation between viral load and CTL do not
establish to what extent CTLs are controlling the
virus or simply responding to changes in antigen
load. Further, in vitro it has been shown that the
HIV-1 protein nef causes down regulation of
MHC class I molecules on HIV-infected cells
making such cells poor targets for cytolytic kill-
ing (Collins et al., 1998). Thus, while CTLs have
the potential to shorten the lives of productively
infected cells, these cells may be poor targets and,
due to viral cytopathic e!ects, may already have
a short lifespan. Perhaps an even stronger argu-
ment is that CTL activity during primary infec-
tion varies widely among HIV-1 patients (Musey
et al., 1998), yet all ten of our patients' viral loads
decline signi"cantly from their peak values. Thus,
it is not clear to what extent the large frequencies
of CTLs observed in some studies are responsible
for e!ectively eliminating productively infected
cells, and hence causing the large drop in viral
load observed during the "rst 30}50 days follow-
ing initial infection.

The observation that anti-CD8 antibodies
cause an increase in plasma virus levels supports
the notion of CD8#T cells playing a role in the
control of viremia, although this e!ect may be
mediated by soluble factors rather than CTL
action. Also, the experiment by Matano et al.
(1998) is not de"nitive, as there is a plausible
alternative explanation of their observations. We
note that administration of anti-CD8 antibody to
control animals AH37 and T14 generates signi"-
cant changes in CD4#T cell levels as well as
CD8#T cell levels. In fact, these animals'
CD4#T cell levels decline to approximately 25
and 50% of their respective baseline values by
7 days following anti-CD8 monoclonal antibody
injection. Such a signi"cant change in the
CD4#T cell population implies that the mon-
oclonal antibody does not simply remove
CD8#T cells. Major changes in cytokine pro-
duction and in the degree of activation of
CD4#T cells may well be occurring, which in
turn could signi"cantly alter the virus concentra-
tion. The target-cell-limited model, in fact, pre-
dicts much higher peak levels in viremia if the
number of activated cells present at the time of
initial infection is increased. We speculate that
the low levels of CD4#T cells found in the
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periphery 7 days after injection with anti-CD8
monoclonal antibody is the result of their activa-
tion and death or sequestration in lymph nodes.
The anti-CD8 antibody might be inducing pro-
in#ammatory cytokines that simultaneously con-
strict the e!erent lymph node ducts and produce
an increase in activated CD4#T cells that are
SIV-susceptible.

In another SIV experiment (Schmitz et al.,
1999), additional evidence is presented that sug-
gests CD8#T cells control viral load immediate-
ly following the peak in some monkeys. Again,
anti-CD8 monoclonal antibodies were used to
deplete the CD8#T cells. Here, viral loads were
only reported from the peak onwards. Although
all "ve control animals had approximately the
same peak values in viral load as those whose
CD8#T cells had been depleted, those with de-
pleted CD8#T cells on average maintained
higher viral loads in the 28 days following the
peak. In this experiment, unlike results reported
in Matano et al. (1998), the presence of CD8#T
cells did not a!ect the magnitude of the peak viral
load since both the controls and the CD8-de-
pleted animals had similar peak values.

In summary, although CD8#T cells may in-
#uence viral load, the e!ect seen by Schmitz et al.
(1999) occurred after the peak. Our models of
primary infection also suggest that if CD8#T
cells are playing a role in primary infection, their
main e!ect is seen predominantly late in the re-
sponse and may not be directly responsible for
bringing the peak viremia down. More detailed
experimental studies coupled with models of
CD8#T cell activity, will be needed to more
precisely elucidate the role of CD8#T cells in
primary infection.

5. Summary

We have shown that a frequently used target-
cell-limited model can mimic the highly diverse
temporal changes in viral load of ten patients
during the "rst 100 days or so of primary HIV-1
infection. These results are consistent with, and
provide evidence for, target cell limitation being
the principle cause of the initial decline in viral
load following the initial viremia peak.

The standard target-cell-limited model accu-
rately predicts viral load in some patients well
beyond the initial transient, but in other patients
the viral load falls far below the model's predic-
tion. This suggests that one or more unmodeled
processes that lower the viral load are present in
these patients. We have explored two such pro-
cesses*cytotoxic T lymphocyte (CTL) destruc-
tion of productively infected cells and sup-
pression by CD8#T cell antiviral factor (CAF).
We "nd that models that include either one of
these e!ects can mimic patient data, but thus far
we are unable to clearly identify one or the other
as dominant. Partial evidence in favor of CAF
over CTL was obtained, however, since unrealis-
tically high values of the productively infected
death rate constant were needed to match the
data in the three patients we considered.
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Foundation, NIH grants RR06555 and AI40387, and
a research grant from Texas A & M University-Cor-
pus Christi. We thank George Shaw, University of
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infection patients for analysis and the patients who
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APPENDIX A

In Section 2.2 it was asserted that two pairs of
parameters (¹

0
and n, c and n) in the simpli"ed

model are dependent. We now make that state-
ment precise.

A.1. DEPENDENCY OF ¹
0

AND n

Suppose the uninfected equilibrium require-
ment, j"d¹0 is used to eliminate the source
term, j, in eqn (1), and de"ne the initial-value
problem IVP1 by

d¹ (t)
dt "d (¹0!¹)!k¹<, ¹(0)"¹0

d¹*(t)
dt

"k¹<!d¹*, ¹* (0)"¹*
0
, (IVP1)
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d<(t)
dt

"n¹*!c<, <(0)"<
0

Let /(t)"[/
1
(t) /

2
(t) /

3
(t)]T be the unique

solution on some interval of interest, [0, t
f
].

De"ne a second initial value problem, IVP2,
by

d¹I (t)
dt

"d(¹I
0
!¹I )!k¹I <, ¹I (0)"¹I

0
,

d¹I *(t)
dt

"k¹I <!d¹3 *, ¹I *(0)"¹3 *
0
, (IVP2)

d<(t)
dt

"nJ ¹3 *!c<, <(0)"<
0
.

If ¹I
0
"p¹

0
and nJ "(1/p)n, then IVP2 has

solution /I (t)"[p/
1
(t) p/

2
(t) /

3
(t)]T on the in-

terval [0, t
f
].The proof is immediate.

The consequence of this result is that either the
nominal target cell density, ¹

0
, or the virion

production constant, n, can be sought in para-
meter estimation using measurements of viral
load alone, but not both. If methods are devised
to make independent measurements of either of
these, then the other can be sought using para-
meter estimation schemes such as the one we use
in Section 2 which uses only viral load data.

A.2. DEPENDENCY OF c AND n

When cAd, a quasi-steady state approxima-
tion is sometimes used (Nowak et al., 1997b) to
reduce the system of three equations in the sim-
pli"ed model to two di!erential equations and
one algebraic equation:

d¹ (t)
dt

"d (¹
0
!¹)!

kn
c

¹¹*,

d¹*(t)
dt

"

kn
c

¹¹*!d¹*,

<1 ,
n
c
¹*.

Numerically it has been veri"ed that, for the
values of c and d in Table 2, this system of
equations gives solutions that are nearly identical
with the original system. We note that neither
n nor c appears individually but always as a ratio.
Hence, we cannot distinguish between these two
quantities from viral load data alone.


	1. Introduction
	FIGURE 1

	2. Parameter estimation
	TABLE 1
	TABLE 2

	3. Immune responses
	FIGURE 2
	TABLE 3
	FIGURE 3
	FIGURE 4
	FIGURE 5
	TABLE 4
	FIGURE 6
	FIGURE 7

	4. Discussion
	5. Summary
	REFERENCES
	APPENDIX A

