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Abstract. The expression of survival factors for radiation damagéls e based on probabilistic
assumptions and experimentally fitted for each tumor, texfiaand conditions. Here we show how
the simplest of these radiobiological models can be derfk@t the maximum entropy principle
of the classical Boltzmann-Gibbs expression. We extergldbiivation using the Tsallis entropy
and a cutoff hypothesis, motivated by clinical observatighigeneralization of the exponential, the
logarithm and the product to a non-extensive frameworkyiges a simple formula for the survival
fraction corresponding to the application of several réoiiedoses on a living tissue. The obtained
expression shows a remarkable agreement with the expdehdata found in the literature, also
providing a new interpretation of some of the parametem®dutced anew. It is also shown how
the presented formalism may has direct application in tadi@apy treatment optimization through
the definition of the potential effect difference, simplylazdated between the tumour and the
surrounding tissue.
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INTRODUCTION

One of the main concerns of a radiation oncologist is to finckatent which, maxi-
mizing the damage over the tumor, minimizes it over the surding healthy tissue. In
order to reach a suitable treatment the radiobiologiste lteweloped some empirical
models describing the interaction between radiation anndgitissues (see [1] for a re-
view of radiobiology models) capable of finding the survifraktion, s, of cells under
a radiation dosel). The applicability limits of these models are not clear sdtipie
corrections have been developed to fit the experimental[@hta

The concept of tissue effedE, raised from some of these models [3] is used to com-
pare different treatments each other. Usually expresséd-as-In (Fs) is a dimension-
less magnitude that gathers several models of interaceétween cells and ionizing
radiation.

The simplest radiobiology model is the linear one. Here ibsue effect is consid-
ered linear to the radiation dose,= aD, and the survival fractionfs = exp(—aD),
Is viewed as the cumulative survival probability of a celdenany dose belo®. This
probability fullfils the additive property meaning that teects of radiation are cumu-
lative following an additive model and the survival fractifor two doses could be found
asks[D1 + Dy| = Fs[Dq]. Fs[D2).

However, this model only fits the experimental data for somsues, under low
radiation doses [1], so the tissue effect must be correct&t aD + BD?, called the



linear quadratic (LQ) model. But then the survival fractiosds the additive property,
Fs[D1+ D2] < Ks[D1].Fs[D2] , and the tissue effect becomes a supperadditive quantity,
E [Dl—{— Dz] >E [D]_] +E [Dz].

As a result of the nonlinear nature Bfin this case, the superposition principle is not
fulfilled. However any model of interaction between radiatand living tissues must
allow to divide a continuous radiation in finite intervalsdatine resultant tissue effect
must be the same.

Indeed, it is easy to show that, under the LQ viewpoint, if tissue effect were
additive for different radiation sessions, then the adititiof the dose would not hold.
Conversely, assuming that the dose is additive then theetisBect is not equivalent to
the sum of the effects for different doses. This result satgythat the radiobiological
problem must be approached from a non extensive formul@ijon

In this work we use at the first stage the Boltzmann-Gibbs (B@&)ew in order to
find the expression of the tissue effect as a function of tlsedied dose. Later, along
with the Tsallis entropy [5] definition, it is assumed thatiical value of the radiation
dose Kkills every single cell and a general expression forgirfraction is found. This
survival fraction expression fits the experimental datanewbere previous empirical
models fail. Using the}-deformed functions [6, 7] a new expression to find the satviv
fraction of a whole treatment is found allowing to show hitat$ind the best treatment.

FIRST STEP: THE CLASSICAL APPROACH

First we study the extensive problem applying the BG entrapuyiits of the Boltzmann
constant),

s=- [ In[p(E) p(E)IE, @
0

where in this cask is, as before, the tissue effect apE) is the cell killing probability
density.

According to the maximum entropy principle, f(E) satisfies the normalization
condition and a finite mean value of the tissue effect doest,ettien the problem of
finding the p(E) that extremizes the BG entropy under the above conditionsbean
posed. It is well known that among all continuous probapdistributions for a positive
continuous variable with a fixed mean value, the exponedisatibution has the largest

entropy [8]. So,
P(E) = g5 @

and the survival probability of a single cell will be

FS:/E p(x)dx=¢ ©. 3)

The survival probability here must fulfill the dose addiyvproperty. This can be
achieved if, following the discussion in the previous sattithe tissue effect is propor-
tional to the absorbed dose:

E =agD, 4)



whereqg is chosen as a constant that makesdimensional.

It must be noted that (3) is the experimentally proved andetuly used expression
for the survival fraction as a function of tissue effect austified in the literature only
through empirical arguments [1]. We can take-= ap/ (E) = 1/ (D) and the expression
(3) becomes expressed in the known standard radiobiolagy &b the linear model.

Even when the BG treatment of the problem does not cover thitabladata, it
shows that the tissue effect must be defined as proportiontidet absorbed dose of
radiation. However the empiric expressions already kndvawsas was discussed in the
introduction, that the survival probability of a cell doest fulfill the additive property.
Since this is usually associated to non extensive problamsdlution must be searched
using a non extensive definition of entropy. On the other h#rel Tsallis formulation
of the entropy has been proved its helpfulness when apmipdoblems of this nature.

ONE STEP FURTHER: THE GENERALIZED APPROACH

To apply the maximum entropy principle, in the Tsallis versito the problem of finding

the survival fraction of a living tissue [9] that receivesaiation, we postulate the

existence of some amount of absorbed radiafgn< oo (or its equivalent “minimal

annihilation effect”,Eqg = agDg) after which no cell survives. The application of the

maximum entropy principle performs like the usual one buhwifew modifications.
The Tsallis entropy becomes

sq:qT11 (1—/0E° pq(E)dE), (5)

the normalization condition is in this ca§§° p(E)dE = 1 and theg-mean value be-
comes OEO pY(E)EdE = (E), < c. With this definition, all properties of the tissue and
its characteristics of the interaction with radiation beedncluded inE) , and therefore
in Eg. This is the only parameter (besidgsentering in our description. It is clear that
the determination of) , for the different tissues under different conditions ofiagidn
would give the necessary information for the charactdonadf the survival factor.

To calculate the maximum of (5) under the above conditioesatbll known method
of Lagrange multipliers [7] is applied, obtaining

EO:@(@)“, 6)

(2=a\7"(, 1-a(2=a\" "
p<E)_<<E>q> (1 Z—q(<E>q> E) ' ")

and



Then the survival factor is

N

—-q

B = [ poax= (1- )", ®

with g < 1 for E < Eg and zero otherwise. It is not hard to see that whenr 1 then
Eo — w0 and(E)q — (E).
Equation (8) can be written

_ b\
rp)—{(1-8) ™<Do ©)
0 VD > Dy

where we introducelt = agD, y= f%g andDg = Eg/ap. Finally, the LQ model is easily
recovered from (9) in the limig — 1 up to order two in a Taylor series expansion [10].

Tsallis based Survival fraction properties

The linear model for the tissue effect [1] implies that if tHese is additive the
corresponding survival fraction is multiplicative. Thduthis property belongs only to
the linear model and not to more general descriptions likedf) model [1] and others,
we think it is worth to find a link between the additivity prapeof the dose and the
probabilistic properties of the cell survival fraction.

Let us define the exjgx) function

X y
exp,(X) = {1+ Y’] ) (10)
and the Ip(x) its inverse function

Iny(exp,(x)) = X. (11)

Then, let us introduce thgproduct of two numbers andy as

x@yy = exp, [Iny(x) +Iny(y)] = [x% -|—y% - 1} g (12)

Note that definitions (10) and (11) are not essentially d#ifé from theg-exponential
andg-logarithm presented in [6]. We are just introducing thes@mnitions to simplify
the calculations.

Let us now define the “generalized tissue effect’Eas- —%Iny(Fs). We demand
this effect to satisfy the additive property. Then the staliraction,Fs, expressed as
expy(—yEEO) = expy(—yD%), becomes/-multiplicative. This implies that the statistical
independence of the survival fractions is only possiblemhes « (g — 1).

The survival fraction for the sum of the effects aftédoses becomes



i=1

Fs(NE) = [1—21[5—0] =exp, [—_ZVE—OI = [(X)] Fs(Ei), (13)
1= 1= y

where[@QN 4] , denotes the iterated application of taroduct.

EXPERIMENTAL AGREEMENT

Equation (9) represents the survival fraction in terms efrtteasurable quantiti€s(ra-
diation dose) an@g (minimal annihilation dose). In order to compare our modihw
the experimental data we have selected some survival ctnw@sthe literature where
the survival fractionFs is represented as a function Dffor different radiation condi-
tions. However, ifD is rescaled as 4 D/Dy, as usual in phase transition phenomena,
all curves corresponding to the same tissue collapse tathe straight line in a log-log
plot.

The expression of Ifirs] has been fitted for 23 experimental data sets, corresponding
to 5 different tissues, in terms of the rescaled variablé@ nD/Do|, minimizing the
appropriate least squares functional usingdteepest descentethod [11]. The slope
of these lines are the valuespMmeaning thaDg is the natural unit oD.

Figure 1 shows, in a log-log plot, the comparison of our mouigh all these data
sets. In order to represent all data sets in the same ploutivésal fraction is shown

normalized byy as(Fs)*".

All the information about the kind of radiation, radiatioate, etc. is contained in
the phenomenological terg, whereas tissues are characterizedybyrhis makes
(9) a very general expression with universal charactegstince the phase transition
described by (9) is homomorphic with the phase transitiofleafomagnets near the
Curie point [17]. The exponent in this case, as in ferromagnetic phase transitions,
determines the universality class. Thgm our case deals only with the kind of tissue
that interacts with radiation [10].

ISIT POSSIBLE TO DESIGN THE BEST PROTOCOL?

The expression for the survival fraction afi¢idoses of radiation must allow to compare
the damage provoked on the tumor and surrounding tissueittie magnitudey and
Do are known for both, tumor and tissue. Let us assume we knowettammended
radiation dos® . per session for a treatment withsessions at several valueshbf\We
will define the potential effect as

X =—In[R, (14)
and then the recommended potential effect per dose oveunrhertwill be,
D
X+ =—y"In [1— %] , (15)
Do
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FIGURE 1. Normalized survival fractions(,FS)l/V , as a function of the rescaled radiation dose, 1
D/Dy. The straight line shown = x. Values fory andDg are detailed in table 1.

wherey(®) and Dg) are the characteristic radiation coefficients for the turtiave have

already characterized the healthy tissue around the turition) andD(()h)

find the survival fraction of cells after the treatment foe tamor,

then we can

o = expyy [Nnyy [exp(—x2)]] (16)
and the healthy tissue,
mp®
" = expm [W 0 A NIny [exp(— X+)]] (17)
o

In order to find the best treatment all we need is to calculedelifference of potentials
for the treatment,

o)

AX — X(t) _X(h) =1|n m

: (18)

and guarantee that it will be positive. This could be achdetaking advantage of the
different responses to radiation of tumor and normal tissAéso, if this response is too
close for an specific kind of radiation or a given dose rates¢hconditions could be
changed looking for a higher potential difference.



CONCLUSIONS

A new theoretical expression for the survival fraction ofisender radiation has been
found, using the Tsallis formulation of entropy. The claiexistence of a critical
value for the absorbed radiation dose under which no celgiv&uis introduced in
the formulation and a proper expression is gotten. The ngsession depends of two
coefficients that characterize the tissue behaviour urat#ation /) and the specifics
conditions in which the radiation is applieD().

The Tsallis mathematical formalism allows to redefine thdtiplication operation
giving a way to find the survival fraction after several rdita sessions. If the charac-
teristic coefficients are known for the tumor and the surdiog tissue then some hints
can be given to choose the less harmful, albeit most effidiez@atment to apply.
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TABLE 1. Values fory andDg obtained from the fitting with experimental data.

(1) Human melanoma (y = 14.0+0.9) irradiated at different dose rates. Data extracted
from [12].

150 cGy/min Do =27+2Gy
7.6 cGy/min Do=38+4Gy
1.6 cGy/min Do=46+5 Gy

(2) Intestinal stem-cells (y = 30.5+0.4) irradiated with different particles an conditions.
Data extracted from [13].

Neutrons Do=36.0+0.7 Gy
Electrons (high dose rate) Dp=622+12 Gy
Electrons (low dose rate) Do =688+1.6 Gy
Electrons (hypoxic conditions) Do =162+ 3 Gy

(3) Cultured mammalian cells (y = 8.9+ 0.6) exposed to x-rays under oxic and hypoxic
conditions. Data extracted from [14].

Oxic Do=217+14Gy

Hypoxic Dp=61+4 Gy

(4) Chinese hamster cells (y = 14.24+0.6) irradiated in the presence or absence of mis-
onidazole. Data extracted from [15].

Hypoxic Do =85+7 Gy
Hypoxic, 1mM Do =46+3 Gy
Hypoxic, 10mM Dp=33+2Gy
Aerated Do =29+3 Gy
Aerated, 1ImM Do=28+3 Gy
Aerated, 10mM Do =32+4 Gy

(5) Human kidney cells (y = 8.8 £ 0.3) exposed in vitro to radiations of different energies.
Data extracted from [16].

250kVp x-rays Do =2244+0.8 Gy
14.9MeV deuterons Do =22+3 Gy
3MeV deuterons Do=17+2 Gy
26MeV a-particles Do=15+2 Gy
8.3MeV a-particles Dp=9.1+12Gy
5.1MeV a-particles Dp=75+0.8 Gy
4MeV a-particles Dy =6.9+0.6 Gy

2.5MeV a-particles Dp=9.2+0.7 Gy




