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Foreword
by John L. Hennessy

President, Stanford University

FOR A NUMBER OF YEARS, I have believed that advances in
software, rather than hardware, held the key to making parallel computing
more commonplace. In particular, the lack of a broadly supported standard
for programming shared-memory multiprocessors has been a chasm both
for users and for software vendors interested in porting their software to
these multiprocessors. OpenMP represents the first vendor-independent,
commercial “bridge” across this chasm.

Such a bridge is critical to achieve portability across different shared-
memory multiprocessors. In the parallel programming world, the chal-
lenge is to obtain both this functional portability as well as performance
portability. By performance portability, I mean the ability to have reason-
able expectations about how parallel applications will perform on different
multiprocessor architectures. OpenMP makes important strides in enhanc-
ing performance portability among shared-memory architectures.

Parallel computing is attractive because it offers users the potential of
higher performance. The central problem in parallel computing for nearly
20 years has been to improve the “gain to pain ratio.” Improving this ratio,
with either hardware or software, means making the gains in performance
come at less pain to the programmer! Shared-memory multiprocessing
was developed with this goal in mind. It provides a familiar programming
model, allows parallel applications to be developed incrementally, and
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supports fine-grain communication in a very cost effective manner. All of
these factors make it easier to achieve high performance on parallel
machines. More recently, the development of cache-coherent distributed
shared memory has provided a method for scaling shared-memory archi-
tectures to larger numbers of processors. In many ways, this development
removed the hardware barrier to scalable, shared-memory multiprocess-
ing.

OpenMP represents the important step of providing a software stan-
dard for these shared-memory multiprocessors. Our goal now must be to
learn how to program these machines effectively (i.e., with a high value
for gain/pain). This book will help users accomplish this important goal.
By focusing its attention on how to use OpenMP, rather than on defining
the standard, the authors have made a significant contribution to the
important task of mastering the programming of multiprocessors.
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Preface

OPENMP IS A PARALLEL PROGRAMMING MODEL for shared
memory and distributed shared memory multiprocessors. Pioneered by
SGI and developed in collaboration with other parallel computer vendors,
OpenMP is fast becoming the de facto standard for parallelizing applica-
tions. There is an independent OpenMP organization today with most of
the major computer manufacturers on its board, including Compaq,
Hewlett-Packard, Intel, IBM, Kuck & Associates (KAI), SGI, Sun, and the
U.S. Department of Energy ASCI Program. The OpenMP effort has also
been endorsed by over 15 software vendors and application developers,
reflecting the broad industry support for the OpenMP standard.

Unfortunately, the main information available about OpenMP is the
OpenMP specification (available from the OpenMP Web site at www.
openmp.org). Although this is appropriate as a formal and complete speci-
fication, it is not a very accessible format for programmers wishing to use
OpenMP for developing parallel applications. This book tries to fulfill the
needs of these programmers.

This introductory-level book is primarily designed for application
developers interested in enhancing the performance of their applications
by utilizing multiple processors. The book emphasizes practical concepts
and tries to address the concerns of real application developers. Little
background is assumed of the reader other than single-processor program-
ming experience and the ability to follow simple program examples in the
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Fortran programming language. While the example programs are usually
in Fortran, all the basic OpenMP constructs are presented in Fortran, C,
and C++.

The book tries to balance the needs of both beginning and advanced
parallel programmers. The introductory material is a must for programmers
new to parallel programming, but may easily be skipped by those familiar
with the basic concepts of parallelism. The latter are more likely to be inter-
ested in applying known techniques using individual OpenMP mecha-
nisms, or in addressing performance issues in their parallel program.

The authors are all SGI engineers who were involved in the design and
implementation of OpenMP and include compiler writers, application
developers, and performance engineers. We hope that our diverse back-
grounds are positively reflected in the breadth and depth of the material in
the text.

Organization of the Book

This book is organized into six chapters.
Chapter 1, “Introduction,” presents the motivation for parallel pro-

gramming by giving examples of performance gains achieved by some
real-world application programs. It describes the different kinds of parallel
computers and the one targeted by OpenMP. It gives a high-level glimpse
of OpenMP and includes some historical background.

Chapter 2, “Getting Started with OpenMP,” gives a bird’s-eye view of
OpenMP and describes what happens when an OpenMP parallel program
is executed. This chapter is a must-read for programmers new to parallel
programming, while advanced readers need only skim the chapter to get
an overview of the various components of OpenMP.

Chapter 3, “Exploiting Loop-Level Parallelism,” focuses on using
OpenMP to direct the execution of loops across multiple processors. Loop-
level parallelism is among the most common forms of parallelism in appli-
cations and is also the simplest to exploit. The constructs described in this
chapter are therefore the most popular of the OpenMP constructs.

Chapter 4, “Beyond Loop-Level Parallelism: Parallel Regions,” focuses
on exploiting parallelism beyond individual loops, such as parallelism
across multiple loops and parallelization of nonloop constructs. The tech-
niques discussed in this chapter are useful when trying to parallelize an
increasingly large portion of an application and are crucial for scalable
performance on large numbers of processors.
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Chapter 5, “Synchronization,” describes the synchronization mecha-
nisms in OpenMP. It describes the situations in a shared memory parallel
program when explicit synchronization is necessary. It presents the vari-
ous OpenMP synchronization constructs and also describes how program-
mers may build their own custom synchronization in a shared memory
parallel program.

Chapter 6, “Performance,” discusses the performance issues that arise
in shared memory parallel programs. The only reason to write an OpenMP
program is scalable performance, and this chapter is a must-read to realize
these performance goals.

Appendix A, A Quick Reference to OpenMP, which details various
OpenMP directives, runtime library routines, lock routines, and so on, can
be found immediately following Chapter 6.

A presentation note regarding the material in the text. The code frag-
ments in the examples are presented using a different font, shown below:

This is a code sample in an example.

This is an OpenMP construct in an example.

Within the examples all OpenMP constructs are highlighted in bold-
face monofont. Code segments such as variable names, or OpenMP con-
structs used within the text are simply highlighted using the regular text
font, but in italics as in this sample.

Acknowledgments

This book is based entirely on the OpenMP effort, which would not have
been possible without the members of the OpenMP Architectural Review
Board who participated in the design of the OpenMP specification, includ-
ing the following organizations: Compaq Computer Corporation, Hewlett-
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work on the book. In particular, we would like to thank Ken Jacobsen,
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effort, and Wesley Jones and Christian Tanasescu for his help with several
applications discussed in the book.
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lies, who let us steal time in various ways so that we could moonlight on
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ENHANCED COMPUTER APPLICATION PERFORMANCE is the only
practical purpose of parallel processing. Many computer applications con-
tinue to exceed the capabilities delivered by the fastest single processors,
so it is compelling to harness the aggregate capabilities of multiple proces-
sors to provide additional computational power. Even applications with
adequate single-processor performance on high-end systems often enjoy a
significant cost advantage when implemented in parallel on systems utiliz-
ing multiple, lower-cost, commodity microprocessors. Raw performance
and price performance: these are the direct rewards of parallel processing. 

The cost that a software developer incurs to attain meaningful parallel
performance comes in the form of additional design and programming
complexity inherent in producing correct and efficient computer code for
multiple processors. If computer application performance or price perfor-
mance is important to you, then keep reading. It is the goal of both
OpenMP and this book to minimize the complexity introduced when add-
ing parallelism to application code.

In this chapter, we introduce the benefits of parallelism through exam-
ples and then describe the approach taken in OpenMP to support the
development of parallel applications. The shared memory multiprocessor

CHAPTER 1

Introduction
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target architecture is described at a high level, followed by a brief explana-
tion of why OpenMP was developed and how it came to be. Finally, a road
map of the remainder of the book is presented to help navigate through
the rest of the text. This will help readers with different levels of experi-
ence in parallel programming come up to speed on OpenMP as quickly as
possible.

This book assumes that the reader is familiar with general algorithm
development and programming methods. No specific experience in paral-
lel programming is assumed, so experienced parallel programmers will
want to use the road map provided in this chapter to skip over some of the
more introductory-level material. Knowledge of the Fortran language is
somewhat helpful, as examples are primarily presented in this language.
However, most programmers will probably easily understand them. In
addition, there are several examples presented in C and C++ as well.

1.1 Performance with OpenMP

Applications that rely on the power of more than a single processor are
numerous. Often they provide results that are time-critical in one way or
another. Consider the example of weather forecasting. What use would a
highly accurate weather model for tomorrow’s forecast be if the required
computation takes until the following day to complete? The computational
complexity of a weather problem is directly related to the accuracy and
detail of the requested forecast simulation. Figure 1.1 illustrates the perfor-
mance of the MM5 (mesoscale model) weather code when implemented
using OpenMP [GDS 95] on an SGI Origin 2000 multiprocessor.1 The graph
shows how much faster the problem can be solved when using multiple
processors: the forecast can be generated 70 times faster by using 128 pro-
cessors compared to using only a single processor. The factor by which the
time to solution can be improved compared to using only a single proces-
sor is called speedup.

These performance levels cannot be supported by a single-processor
system. Even the fastest single processor available today, the Fujitsu
VPP5000, which can perform at a peak of 1512 Mflop/sec, would deliver
MM5 performance equivalent to only about 10 of the Origin 2000 proces-
sors demonstrated in the results shown in Figure 1.1.2 Because of these

1 MM5 was developed by and is copyrighted by the Pennsylvania State University (Penn State)
and the University Corporation for Atmospheric Research (UCAR). MM5 results on SGI
Origin 2000 courtesy of Wesley Jones, SGI.

2 http://box.mmm.ucar.edu/mm5/mpp/helpdesk/20000106.html.
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dramatic performance gains through parallel execution, it becomes possi-
ble to provide detailed and accurate weather forecasts in a timely fashion.

The MM5 application is a specific type of computational fluid dynamics
(CFD) problem. CFD is routinely used to design both commercial and mili-
tary aircraft and has an ever-increasing collection of nonaerospace applica-
tions as diverse as the simulation of blood flow in arteries [THZ 98] to the
ideal mixing of ingredients during beer production. These simulations are
very computationally expensive by the nature of the complex mathematical
problem being solved. Like MM5, better and more accurate solutions
require more detailed simulations, possible only if additional computational
resources are available. The NAS Parallel Benchmarks [NASPB 91] are an
industry standard series of performance benchmarks that emulate CFD
applications as implemented for multiprocessor systems. The results from
one of these benchmarks, known as APPLU, is shown in Figure 1.2 for a
varying number of processors. Results are shown for both the OpenMP and
MPI implementations of APPLU. The performance increases by a factor of
more than 90 as we apply up to 64 processors to the same large simulation.3

3 This seemingly impossible performance feat, where the application speeds up by a factor
greater than the number of processors utilized, is called superlinear speedup and will be
explained by cache memory effects, discussed in Chapter 6. 
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Clearly, parallel computing can have an enormous impact on appli-
cation performance, and OpenMP facilitates access to this enhanced per-
formance. Can any application be altered to provide such impressive
performance gains and scalability over so many processors? It very likely
can. How likely are such gains? It would probably take a large development
effort, so it really depends on the importance of additional performance
and the corresponding investment of effort. Is there a middle ground where
an application can benefit from a modest number of processors with a
correspondingly modest development effort? Absolutely, and this is the
level at which most applications exploit parallel computer systems today.
OpenMP is designed to support incremental parallelization, or the ability to
parallelize an application a little at a time at a rate where the developer
feels additional effort is worthwhile.

Automobile crash analysis is another application area that signifi-
cantly benefits from parallel processing. Full-scale tests of car crashes are
very expensive, and automobile companies as well as government agen-
cies would like to do more tests than is economically feasible. Computa-
tional crash analysis applications have been proven to be highly accurate
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and much less expensive to perform than full-scale tests. The simulations
are computationally expensive, with turnaround times for a single crash
test simulation often measured in days even on the world’s fastest super-
computers. This can directly impact the schedule of getting a safe new car
design on the road, so performance is a key business concern. Crash anal-
ysis is a difficult problem class in which to realize the huge range of scal-
ability demonstrated in the previous MM5 example. Figure 1.3 shows an
example of performance from a leading parallel crash simulation code par-
allelized using OpenMP. The performance or speedup yielded by employ-
ing eight processors is close to 4.3 on the particular example shown [RAB
98]. This is a modest improvement compared to the weather code exam-
ple, but a vitally important one to automobile manufacturers whose eco-
nomic viability increasingly depends on shortened design cycles. 

This crash simulation code represents an excellent example of incre-
mental parallelism. The parallel version of most automobile crash codes
evolved from the single-processor implementation and initially provided
parallel execution in support of very limited but key functionality. Some
types of simulations would get a significant advantage from paralleliza-
tion, while others would realize little or none. As new releases of the code
are developed, more and more parts of the code are parallelized. Changes
range from very simple code modifications to the reformulation of central
algorithms to facilitate parallelization. This incremental process helps to
deliver enhanced performance in a timely fashion while following a con-
servative development path to maintain the integrity of application code
that has been proven by many years of testing and verification.
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1.2 A First Glimpse of OpenMP

Developing a parallel computer application is not so different from writing
a sequential (i.e., single-processor) application. First the developer forms a
clear idea of what the program needs to do, including the inputs to and
the outputs from the program. Second, algorithms are designed that not
only describe how the work will be done, but also, in the case of parallel
programs, how the work can be distributed or decomposed across multi-
ple processors. Finally, these algorithms are implemented in the applica-
tion program or code. OpenMP is an implementation model to support this
final step, namely, the implementation of parallel algorithms. It leaves the
responsibility of designing the appropriate parallel algorithms to the pro-
grammer and/or other development tools. 

OpenMP is not a new computer language; rather, it works in conjunc-
tion with either standard Fortran or C/C++. It is comprised of a set of
compiler directives that describe the parallelism in the source code, along
with a supporting library of subroutines available to applications (see
Appendix A). Collectively, these directives and library routines are for-
mally described by the application programming interface (API) now
known as OpenMP. 

The directives are instructional notes to any compiler supporting
OpenMP. They take the form of source code comments (in Fortran) or
#pragmas (in C/C++) in order to enhance application portability when
porting to non-OpenMP environments. The simple code segment in
Example 1.1 demonstrates the concept.

          program hello
          print *, "Hello parallel world from threads:"
!$omp parallel
          print *, omp_get_thread_num()
!$omp end parallel
          print *, "Back to the sequential world."
          end

The code in Example 1.1 will result in a single Hello parallel world
from threads: message followed by a unique number for each thread
started by the !$omp parallel directive. The total number of threads active
will be equal to some externally defined degree of parallelism. The closing
Back to the sequential world message will be printed once before the pro-
gram terminates. 

Example 1.1 Simple OpenMP program.
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One way to set the degree of parallelism in OpenMP is through an
operating system–supported environment variable named OMP_NUM_
THREADS. Let us assume that this symbol has been previously set equal
to 4. The program will begin execution just like any other program utiliz-
ing a single processor. When execution reaches the print statement brack-
eted by the !$omp parallel/!$omp end parallel directive pair, three
additional copies of the print code are started. We call each copy a thread,
or thread of execution. The OpenMP routine omp_ get_num_threads()
reports a unique thread identification number between 0 and OMP_NUM_
THREADS – 1. Code after the parallel directive is executed by each thread
independently, resulting in the four unique numbers from 0 to 3 being
printed in some unspecified order. The order may possibly be different
each time the program is run. The !$omp end parallel directive is used to
denote the end of the code segment that we wish to run in parallel. At that
point, the three extra threads are deactivated and normal sequential
behavior continues. One possible output from the program, noting again
that threads are numbered from 0, could be 

Hello parallel world from threads: 
1
3
0
2
Back to the sequential world.

This output occurs because the threads are executing without regard for
one another, and there is only one screen showing the output. What if the
digit of a thread is printed before the carriage return is printed from the
previously printed thread number? In this case, the output could well look
more like

Hello parallel world from threads: 
13

02

Back to the sequential world.

Obviously, it is important for threads to cooperate better with each
other if useful and correct work is to be done by an OpenMP program.
Issues like these fall under the general topic of synchronization, which is
addressed throughout the book, with Chapter 5 being devoted entirely to
the subject.
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This trivial example gives a flavor of how an application can go paral-
lel using OpenMP with very little effort. There is obviously more to cover
before useful applications can be addressed but less than one might think.
By the end of Chapter 2 you will be able to write useful parallel computer
code on your own! 

Before we cover additional details of OpenMP, it is helpful to under-
stand how and why OpenMP came about, as well as the target architec-
ture for OpenMP programs. We do this in the subsequent sections.

1.3 The OpenMP Parallel Computer

OpenMP is primarily designed for shared memory multiprocessors. Figure
1.4 depicts the programming model or logical view presented to a pro-
grammer by this class of computer. The important aspect for our current
purposes is that all of the processors are able to directly access all of the
memory in the machine, through a logically direct connection. Machines
that fall in this class include bus-based systems like the Compaq AlphaSer-
ver, all multiprocessor PC servers and workstations, the SGI Power Chal-
lenge, and the SUN Enterprise systems. Also in this class are distributed
shared memory (DSM) systems. DSM systems are also known as ccNUMA
(Cache Coherent Non-Uniform Memory Access) systems, examples of
which include the SGI Origin 2000, the Sequent NUMA-Q 2000, and the
HP 9000 V-Class. Details on how a machine provides the programmer with
this logical view of a globally addressable memory are unimportant for our
purposes at this time, and we describe all such systems simply as “shared
memory.”

The alternative to a shared configuration is distributed memory, in
which each processor in the system is only capable of directly addressing
memory physically associated with it. Figure 1.5 depicts the classic form
of a distributed memory system. Here, each processor in the system can
only address its own local memory, and it is always up to the programmer
to manage the mapping of the program data to the specific memory sys-
tem where data isto be physically stored. To access information in memory

P0Processors P1 P2 Pn

Memory

Figure 1.4 A canonical shared memory architecture.
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connected to other processors, the user must explicitly pass messages
through some network connecting the processors. Examples of systems in
this category include the IBM SP-2 and clusters built up of individual com-
puter systems on a network, or networks of workstations (NOWs). Such
systems are usually programmed with explicit message passing libraries
such as Message Passing Interface (MPI) [PP96] and Parallel Virtual
Machine (PVM). Alternatively, a high-level language approach such as
High Performance Fortran (HPF) [KLS 94] can be used in which the com-
piler generates the required low-level message passing calls from parallel
application code written in the language.

From this very simplified description one may be left wondering why
anyone would build or use a distributed memory parallel machine. For
systems with larger numbers of processors the shared memory itself can
become a bottleneck because there is limited bandwidth capability that
can be engineered into a single-memory subsystem. This places a practical
limit on the number of processors that can be supported in a traditional
shared memory machine, on the order of 32 processors with current tech-
nology. ccNUMA systems such as the SGI Origin 2000 and the HP 9000 V-
Class have combined the logical view of a shared memory machine with
physically distributed/globally addressable memory. Machines of hun-
dreds and even thousands of processors can be supported in this way
while maintaining the simplicity of the shared memory system model. A
programmer writing highly scalable code for such systems must account
for the underlying distributed memory system in order to attain top perfor-
mance. This will be examined in Chapter 6.

1.4 Why OpenMP?

The last decade has seen a tremendous increase in the widespread avail-
ability and affordability of shared memory parallel systems. Not only have

P0

M0 M1 M2 Mn

Processors

Memory

P1 P2 Pn

Interconnection network

Figure 1.5 A canonical message passing (nonshared memory) architecture.
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such multiprocessor systems become more prevalent, they also contain
increasing numbers of processors. Meanwhile, most of the high-level,
portable and/or standard parallel programming models are designed for
distributed memory systems. This has resulted in a serious disconnect
between the state of the hardware and the software APIs to support them.
The goal of OpenMP is to provide a standard and portable API for writing
shared memory parallel programs.

Let us first examine the state of hardware platforms. Over the last sev-
eral years, there has been a surge in both the quantity and scalability of
shared memory computer platforms. Quantity is being driven very quickly
in the low-end market by the rapidly growing PC-based multiprocessor
server/workstation market. The first such systems contained only two pro-
cessors, but this has quickly evolved to four- and eight-processor systems,
and scalability shows no signs of slowing. The growing demand for busi-
ness/enterprise and technical/scientific servers has driven the quantity of
shared memory systems in the medium- to high-end class machines as
well. As the cost of these machines continues to fall, they are deployed
more widely than traditional mainframes and supercomputers. Typical of
these are bus-based machines in the range of 2 to 32 RISC processors like
the SGI Power Challenge, the Compaq AlphaServer, and the Sun Enterprise
servers.

On the software front, the various manufacturers of shared memory
parallel systems have supported different levels of shared memory pro-
gramming functionality in proprietary compiler and library products. In
addition, implementations of distributed memory programming APIs like
MPI are also available for most shared memory multiprocessors. Applica-
tion portability between different systems is extremely important to soft-
ware developers. This desire, combined with the lack of a standard shared
memory parallel API, has led most application developers to use the mes-
sage passing models. This has been true even if the target computer sys-
tems for their applications are all shared memory in nature. A basic goal of
OpenMP, therefore, is to provide a portable standard parallel API specifi-
cally for programming shared memory multiprocessors.

We have made an implicit assumption thus far that shared memory
computers and the related programming model offer some inherent advan-
tage over distributed memory computers to the application developer.
There are many pros and cons, some of which are addressed in Table 1.1.
Programming with a shared memory model has been typically associated
with ease of use at the expense of limited parallel scalability. Distributed
memory programming on the other hand is usually regarded as more diffi-
cult but the only way to achieve higher levels of parallel scalability. Some
of this common wisdom is now being challenged by the current genera-
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tion of scalable shared memory servers coupled with the functionality
offered by OpenMP.

There are other implementation models that one could use instead of
OpenMP, including Pthreads [NBF 96], MPI [PP 96], HPF [KLS 94], and so
on. The choice of an implementation model is largely determined by the

Feature Shared Memory Distributed Memory

Ability to parallelize 
small parts of an 
application at a time

Relatively easy to do. Reward 
versus effort varies widely.

Relatively difficult to do. Tends 
to require more of an all-or-
nothing effort.

Feasibility of scaling an 
application to a large 
number of processors

Currently, few vendors provide 
scalable shared memory systems 
(e.g., ccNUMA systems).

Most vendors provide the ability 
to cluster nonshared memory 
systems with moderate to high-
performance interconnects.

Additional complexity 
over serial code to 
be addressed by 
programmer

Simple parallel algorithms are easy 
and fast to implement. Implemen-
tation of highly scalable complex 
algorithms is supported but more 
involved. 

Significant additional overhead 
and complexity even for imple-
menting simple and localized 
parallel constructs.

Impact on code 
quantity (e.g., amount 
of additional code 
required) and code 
quality (e.g., the read-
ability of the parallel 
code)

Typically requires a small increase 
in code size (2–25%) depending 
on extent of changes required for 
parallel scalability. Code readabil-
ity requires some knowledge of 
shared memory constructs, but is 
otherwise maintained as directives 
embedded within serial code.

Tends to require extra copying 
of data into temporary message 
buffers, resulting in a significant 
amount of message handling 
code. Developer is typically 
faced with extra code 
complexity even in non-
performance-critical code 
segments. Readability of code 
suffers accordingly.

Availability of 
application develop-
ment and debugging 
environments

Requires a special compiler and 
a runtime library that supports 
OpenMP. Well-written code will 
compile and run correctly on one 
processor without an OpenMP 
compiler. Debugging tools are an 
extension of existing serial code 
debuggers. Single memory address 
space simplifies development 
and support of a rich debugger 
functionality.

Does not require a special 
compiler. Only a library for the 
target computer is required, and 
these are generally available. 
Debuggers are more difficult to 
implement because a direct, 
global view of all program 
memory is not available.

Table 1.1 Comparing shared memory and distributed memory programming 
models.
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type of computer architecture targeted for the application, the nature of
the application, and a healthy dose of personal preference.

The message passing programming model has now been very effec-
tively standardized by MPI. MPI is a portable, widely available, and
accepted standard for writing message passing programs. Unfortunately,
message passing is generally regarded as a difficult way to program. It
requires that the program’s data structures be explicitly partitioned, and
typically the entire application must be parallelized in order to work with
the partitioned data structures. There is usually no incremental path to
parallelizing an application in this manner. Furthermore, modern multi-
processor architectures are increasingly providing hardware support for
cache-coherent shared memory; therefore, message passing is becoming
unnecessary and overly restrictive for these systems.

Pthreads is an accepted standard for shared memory in the low end.
However it is not targeted at the technical or high-performance computing
(HPC) spaces. There is little Fortran support for Pthreads, and even for
many HPC class C and C++ language-based applications, the Pthreads
model is lower level and awkward, being more suitable for task parallel-
ism rather than data parallelism. Portability with Pthreads, as with any
standard, requires that the target platform provide a standard-conforming
implementation of Pthreads.

The option of developing new computer languages may be the clean-
est and most efficient way to provide support for parallel processing.
However, practical issues make the wide acceptance of a new computer
language close to impossible. Nobody likes to rewrite old code to new lan-
guages. It is difficult to justify such effort in most cases. Also, educating
and convincing a large enough group of developers to make a new lan-
guage gain critical mass is an extremely difficult task.

A pure library approach was initially considered as an alternative for
what eventually became OpenMP. Two factors led to rejection of a library-
only methodology. First, it is far easier to write portable code using direc-
tives because they are automatically ignored by a compiler that does not
support OpenMP. Second, since directives are recognized and processed
by a compiler, they offer opportunities for compiler-based optimizations.
Likewise, a pure directive approach is difficult as well: some necessary
functionality is quite awkward to express through directives and ends up
looking like executable code in directive syntax. Therefore, a small API
defined by a mixture of directives and some simple library calls was cho-
sen. The OpenMP API does address the portability issue of OpenMP
library calls in non-OpenMP environments, as will be shown later. 
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1.5 History of OpenMP

Although OpenMP is a recently (1997) developed industry standard, it is
very much an evolutionary step in a long history of shared memory pro-
gramming models. The closest previous attempt at a standard shared
memory programming model was the now dormant ANSI X3H5 standards
effort [X3H5 94]. X3H5 was never formally adopted as a standard largely
because interest waned as a wide variety of distributed memory machines
came into vogue during the late 1980s and early 1990s. Machines like the
Intel iPSC and the TMC Connection Machine were the platforms of choice
for a great deal of pioneering work on parallel algorithms. The Intel
machines were programmed through proprietary message passing libraries
and the Connection Machine through the use of data parallel languages
like CMFortran and C* [TMC 91]. More recently, languages such as High
Performance Fortran (HPF) [KLS 94] have been introduced, similar in
spirit to CMFortran.

All of the high-performance shared memory computer hardware ven-
dors support some subset of the OpenMP functionality, but application
portability has been almost impossible to attain. Developers have been
restricted to using only the most basic common functionality that was
available across all compilers, which most often limited them to parallel-
ization of only single loops. Some third-party compiler products offered
more advanced solutions including more of the X3H5 functionality. How-
ever, all available methods lacked direct support for developing highly
scalable parallel applications like those examined in Section 1.1. This scal-
ability shortcoming inherent in all of the support models is fairly natural
given that mainstream scalable shared memory computer hardware has
only become available recently.

The OpenMP initiative was motivated from the developer community.
There was increasing interest in a standard they could reliably use to move
code between the different parallel shared memory platforms they sup-
ported. An industry-based group of application and compiler specialists
from a wide range of leading computer and software vendors came
together as the definition of OpenMP progressed. Using X3H5 as a starting
point, adding more consistent semantics and syntax, adding functionality
known to be useful in practice but not covered by X3H5, and directly sup-
porting scalable parallel programming, OpenMP went from concept to
adopted industry standard from July 1996 to October 1997. Along the way,
the OpenMP Architectural Review Board (ARB) was formed. For more
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information on the ARB, and as a great OpenMP resource in general,
check out the Web site at www.OpenMP.org.

1.6 Navigating the Rest of the Book

This book is written to be introductory in nature while still being of value
to those approaching OpenMP with significant parallel programming expe-
rience. Chapter 2 provides a general overview of OpenMP and is designed
to get a novice up and running basic OpenMP-based programs. Chapter 3
focuses on the OpenMP mechanisms for exploiting loop-level parallelism.
Chapter 4 presents the constructs in OpenMP that go beyond loop-level
parallelism and exploit more scalable forms of parallelism based on parallel
regions. Chapter 5 describes the synchronization constructs in OpenMP.
Finally, Chapter 6 discusses the performance issues that arise when pro-
gramming a shared memory multiprocessor using OpenMP.
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2.1 Introduction

A PARALLEL PROGRAMMING LANGUAGE MUST PROVIDE SUPPORT for the three
basic aspects of parallel programming: specifying parallel execution, com-
municating between multiple threads, and expressing synchronization
between threads. Most parallel languages provide this support through
extensions to an existing sequential language; this has the advantage of
providing parallel extensions within a familiar programming environment. 

Different programming languages have taken different approaches to
providing these extensions. Some languages provide additional constructs
within the base language to express parallel execution, communication,
and so on (e.g., the forall construct in Fortran-95 [ABM 97, MR 99]).
Rather than designing additional language constructs, other approaches
provide directives that can be embedded within existing sequential pro-
grams in the base language; this includes approaches such as HPF [KLS
94]. Finally, application programming interfaces such as MPI [PP 96] and
various threads packages such as Pthreads [NBF 96] don’t design new lan-
guage constructs: rather, they provide support for expressing parallelism
through calls to runtime library routines.

OpenMP takes a directive-based approach for supporting parallelism.
It consists of a set of directives that may be embedded within a program

CHAPTER 2

Getting Started
with OpenMP
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written in a base language such as Fortran, C, or C++. There are two com-
pelling benefits of a directive-based approach that led to this choice: The
first is that this approach allows the same code base to be used for devel-
opment on both single-processor and multiprocessor platforms; on the
former, the directives are simply treated as comments and ignored by the
language translator, leading to correct serial execution. The second related
benefit is that it allows an incremental approach to parallelism—starting
from a sequential program, the programmer can embellish the same exist-
ing program with directives that express parallel execution.

This chapter gives a high-level overview of OpenMP. It describes the
basic constructs as well as the runtime execution model (i.e., the effect of
these constructs when the program is executed). It illustrates these basic
constructs with several examples of increasing complexity. This chapter
will provide a bird’s-eye view of OpenMP; subsequent chapters will dis-
cuss the individual constructs in greater detail.

2.2 OpenMP from 10,000 Meters

At its most elemental level, OpenMP is a set of compiler directives to
express shared memory parallelism. These directives may be offered
within any base language—at this time bindings have been defined for
Fortran, C, and C++ (within the C/C++ languages, directives are referred
to as “pragmas”). Although the basic semantics of the directives is the
same, special features of each language (such as allocatable arrays in For-
tran 90 or class objects in C++) require additional semantics over the
basic directives to support those features. In this book we largely use For-
tran 77 in our examples simply because the Fortran specification for
OpenMP has existed the longest, and several Fortran OpenMP compilers
are available.

In addition to directives, OpenMP also includes a small set of runtime
library routines and environment variables (see Figure 2.1). These are typ-
ically used to examine and modify the execution parameters. For instance,
calls to library routines may be used to control the degree of parallelism
exploited in different portions of the program.

These three pieces—the directive-based language extensions, the run-
time library routines, and the environment variables—taken together
define what is called an application programming interface, or API. The
OpenMP API is independent of the underlying machine/operating system.
OpenMP compilers exist for all the major versions of UNIX as well as Win-
dows NT. Porting a properly written OpenMP program from one system to
another should simply be a matter of recompiling. Furthermore, C and
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C++ OpenMP implementations provide a standard include file, called
omp.h, that provides the OpenMP type definitions and library function
prototypes. This file should therefore be included by all C and C++
OpenMP programs.

The language extensions in OpenMP fall into one of three categories:
control structures for expressing parallelism, data environment constructs
for communicating between threads, and synchronization constructs for
coordinating the execution of multiple threads. We give an overview of
each of the three classes of constructs in this section, and follow this with
simple example programs in the subsequent sections. Prior to all this,
however, we must present some sundry details on the syntax for OpenMP
statements and conditional compilation within OpenMP programs. Con-
sider it like medicine: it tastes bad but is good for you, and hopefully you
only have to take it once.

2.2.1 OpenMP Compiler Directives or Pragmas

Before we present specific OpenMP constructs, we give an overview of
the general syntax of directives (in Fortran) and pragmas (in C and C++). 

Fortran source may be specified in either fixed form or free form. In
fixed form, a line that begins with one of the following prefix keywords
(also referred to as sentinels):

!$omp ...
c$omp ...
*$omp ...

and contains either a space or a zero in the sixth column is treated as an
OpenMP directive by an OpenMP compiler, and treated as a comment
(i.e., ignored) by a non-OpenMP compiler. Furthermore, a line that begins
with one of the above sentinels and contains a character other than a
space or a zero in the sixth column is treated as a continuation directive
line by an OpenMP compiler.

Directives
Runtime
library
routines

Environment
variables

Figure 2.1 The components of OpenMP.
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In free-form Fortran source, a line that begins with the sentinel

!$omp ...

is treated as an OpenMP directive. The sentinel may begin in any column
so long as it appears as a single word and is preceded only by white space.
A directive that needs to be continued on the next line is expressed

!$opm <directive> &

with the ampersand as the last token on that line.
C and C++ OpenMP pragmas follow the syntax 

#pragma omp ...

The omp keyword distinguishes the pragma as an OpenMP pragma, so
that it is processed as such by OpenMP compilers and ignored by non-
OpenMP compilers. 

Since OpenMP directives are identified by a well-defined prefix, they
are easily ignored by non-OpenMP compilers. This allows application
developers to use the same source code base for building their application
on either kind of platform—a parallel version of the code on platforms
that support OpenMP, and a serial version of the code on platforms that
do not support OpenMP. Furthermore, most OpenMP compilers provide
an option to disable the processing of OpenMP directives. This allows
application developers to use the same source code base for building both
parallel and sequential versions of an application using just a compile-
time flag. 

Conditional Compilation

The selective disabling of OpenMP constructs applies only to directives,
whereas an application may also contain statements that are specific to
OpenMP. This could include calls to runtime library routines or just other
code that should only be executed in the parallel version of the code. This
presents a problem when compiling a serial version of the code (i.e., with
OpenMP support disabled), such as calls to library routines that would not
be available.

OpenMP addresses this issue though a conditional compilation facility
that works as follows. In Fortran any statement that we wish to be
included only in the parallel compilation may be preceded by a specific
sentinel. Any statement that is prefixed with the sentinel !$, c$, or *$ start-
ing in column one in fixed form, or the sentinel !$ starting in any column
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but preceded only by white space in free form, is compiled only when
OpenMP support is enabled, and ignored otherwise. These prefixes can
therefore be used to mark statements that are relevant only to the parallel
version of the program.

In Example 2.1, the line containing the call to omp_ get_thread_num
starts with the prefix !$ in column one. As a result it looks like a normal
Fortran comment and will be ignored by default. When OpenMP compila-
tion is enabled, not only are directives with the !$omp prefix enabled, but
the lines with the !$ prefix are also included in the compiled code. The
two characters that make up the prefix are replaced by white spaces at
compile time. As a result only the parallel version of the program (i.e.,
with OpenMP enabled) makes the call to the subroutine. The serial ver-
sion of the code ignores that entire statement, including the call and the
assignment to iam.

       iam = 0

       ! The following statement is compiled only when
       ! OpenMP is enabled, and is ignored otherwise

!$     iam = omp_get_thread_num()
       ...

       ! The following statement is incorrect, since
       ! the sentinel is not preceeded by white space
       ! alone
       y = x !$ + offset
       ...
       ! This is the correct way to write the above
       ! statement. The right-hand side of the 
       ! following assignment is x + offset with OpenMP
       ! enabled, and only x otherwise.
       y = x &
!$&    + offset

In C and C++ all OpenMP implementations are required to define the
preprocessor macro name _OPENMP to the value of the year and month of
the approved OpenMP specification in the form yyyymm. This macro may
be used to selectively enable/disable the compilation of any OpenMP spe-
cific piece of code.

Example 2.1 Using the conditional compilation facility.
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The conditional compilation facility should be used with care since
the prefixed statements are not executed during serial (i.e., non-OpenMP)
compilation. For instance, in the previous example we took care to initial-
ize the iam variable with the value zero, followed by the conditional
assignment of the thread number to the variable. The initialization to zero
ensures that the variable is correctly defined in serial compilation when
the subsequent assignment is ignored.

That completes our discussion of syntax in OpenMP. In the remainder
of this section we present a high-level overview of the three categories of
language extension comprising OpenMP: parallel control structures, data
environment, and synchronization.

2.2.2 Parallel Control Structures

Control structures are constructs that alter the flow of control in a pro-
gram. We call the basic execution model for OpenMP a fork/join model,
and parallel control structures are those constructs that fork (i.e., start)
new threads, or give execution control to one or another set of threads.

OpenMP adopts a minimal set of such constructs. Experience has
shown that only a few control structures are truly necessary for writing
most parallel applications. OpenMP includes a control structure only in
those instances where a compiler can provide both functionality and per-
formance over what a user could reasonably program.

OpenMP provides two kinds of constructs for controlling parallelism.
First, it provides a directive to create multiple threads of execution that
execute concurrently with each other. The only instance of this is the par-
allel directive: it encloses a block of code and creates a set of threads that
each execute this block of code concurrently. Second, OpenMP provides
constructs to divide work among an existing set of parallel threads. An
instance of this is the do directive, used for exploiting loop-level parallel-
ism. It divides the iterations of a loop among multiple concurrently execut-
ing threads. We present examples of each of these directives in later
sections.

2.2.3 Communication and Data Environment

An OpenMP program always begins with a single thread of control that
has associated with it an execution context or data environment (we will
use the two terms interchangeably). This initial thread of control is referred
to as the master thread. The execution context for a thread is the data ad-
dress space containing all the variables specified in the program. This in-
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cludes global variables, automatic variables within subroutines (i.e.,
allocated on the stack), as well as dynamically allocated variables (i.e., allo-
cated on the heap).

The master thread and its execution context exist for the duration of
the entire program. When the master thread encounters a parallel con-
struct, new threads of execution are created along with an execution con-
text for each thread. Let us now examine how the execution context for a
parallel thread is determined.

Each thread has its own stack within its execution context. This pri-
vate stack is used for stack frames for subroutines invoked by that thread.
As a result, multiple threads may individually invoke subroutines and exe-
cute safely without interfering with the stack frames of other threads. 

For all other program variables, the OpenMP parallel construct may
choose to either share a single copy between all the threads or provide
each thread with its own private copy for the duration of the parallel con-
struct. This determination is made on a per-variable basis; therefore it is
possible for threads to share a single copy of one variable, yet have a pri-
vate per-thread copy of another variable, based on the requirements of the
algorithms utilized. Furthermore, this determination of which variables
are shared and which are private is made at each parallel construct, and
may vary from one parallel construct to another.

This distinction between shared and private copies of variables during
parallel constructs is specified by the programmer using OpenMP date
scoping clauses (. . .) for individual variables. These clauses are used to
determine the execution context for the parallel threads. A variable may
have one of three basic attributes: shared, private, or reduction. These are
discussed at some length in later chapters. At this early stage it is suffi-
cient to understand that these scope clauses define the sharing attributes
of an object.

A variable that has the shared scope clause on a parallel construct will
have a single storage location in memory for the duration of that parallel
construct. All parallel threads that reference the variable will always
access the same memory location. That piece of memory is shared by the
parallel threads. Communication between multiple OpenMP threads is
therefore easily expressed through ordinary read/write operations on such
shared variables in the program. Modifications to a variable by one thread
are made available to other threads through the underlying shared mem-
ory mechanisms.

In contrast, a variable that has private scope will have multiple stor-
age locations, one within the execution context of each thread, for the
duration of the parallel construct. All read/write operations on that vari-
able by a thread will refer to the private copy of that variable within that
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thread. This memory location is inaccessible to the other threads. The
most common use of private variables is scratch storage for temporary
results.

The reduction clause is somewhat trickier to understand, since reduc-
tion variables have both private and shared storage behavior. As the name
implies, the reduction attribute is used on objects that are the target of an
arithmetic reduction. Reduction operations are important to many applica-
tions, and the reduction attribute allows them to be implemented by the
compiler efficiently. The most common example is the final summation of
temporary local variables at the end of a parallel construct.

In addition to these three, OpenMP provides several other data scop-
ing attributes. We defer a detailed discussion of these attributes until later
chapters. For now, it is sufficient to understand the basic OpenMP mecha-
nism: the data scoping attributes of individual variables may be controlled
along with each OpenMP construct. 

2.2.4 Synchronization

Multiple OpenMP threads communicate with each other through ordi-
nary reads and writes to shared variables. However, it is often necessary to
coordinate the access to these shared variables across multiple threads.
Without any coordination between threads, it is possible that multiple
threads may simultaneously attempt to modify the same variable, or that
one thread may try to read a variable even as another thread is modifying
that same variable. Such conflicting accesses can potentially lead to incor-
rect data values and must be avoided by explicit coordination between
multiple threads. The term synchronization refers to the mechanisms by
which a parallel program can coordinate the execution of multiple threads. 

The two most common forms of synchronization are mutual exclusion
and event synchronization. A mutual exclusion construct is used to con-
trol access to a shared variable by providing a thread exclusive access to a
shared variable for the duration of the construct. When multiple threads
are modifying the same variable, acquiring exclusive access to the variable
before modifying it ensures the integrity of that variable. OpenMP pro-
vides mutual exclusion through a critical directive.

Event synchronization is typically used to signal the occurrence of an
event across multiple threads. The simplest form of event synchronization
is a barrier. A barrier directive in a parallel program defines a point where
each thread waits for all other threads to arrive. Once all the threads arrive
at that point, they can all continue execution past the barrier. Each thread
is therefore guaranteed that all the code before the barrier has been com-
pleted across all other threads.
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In addition to critical and barrier, OpenMP provides several other syn-
chronization constructs. Some of these constructs make it convenient to
express common synchronization patterns, while the others are useful in
obtaining the highest performing implementation. These various con-
structs are discussed in greater detail in Chapter 5.

That completes our high-level overview of the language. Some of the
concepts presented may not become meaningful until you have more
experience with the language. At this point, however, we can begin pre-
senting concrete examples and explain them using the model described in
this section.

2.3 Parallelizing a Simple Loop

Enough of high-level concepts: let us look at a simple parallel program
that shows how to execute a simple loop in parallel. Consider Example
2.2: a multiply-add, or saxpy loop as it is often called (for “single-precision
a*x plus y”). In a true saxpy the variable y is an array, but for simplicity
here we have y as just a scalar variable.

subroutine saxpy(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y

do i = 1, n
   z(i) = a * x(i) + y
enddo
return
end

The loop in Example 2.2 has no dependences. In other words the result
of one loop iteration does not depend on the result of any other iteration.
This means that two different iterations could be executed simultaneously
by two different processors. We parallelize this loop using the parallel do
construct as shown in Example 2.3.

      subroutine saxpy(z, a, x, y, n)
      integer i, n
      real z(n), a, x(n), y

Example 2.2 A simple saxpy-like loop.

Example 2.3 The saxpy-like loop parallelized using OpenMP.



24 Chapter 2—Getting Started with OpenMP

!$omp parallel do
      do i = 1, n
         z(i) = a * x(i) + y
      enddo
      return
      end

As we can see, the only change to the original program is the addition
of the parallel do directive. This directive must be followed by a do loop
construct and specifies that the iterations of the do loop be executed con-
currently across multiple threads. An OpenMP compiler must create a set
of threads and distribute the iterations of the do loop across those threads
for parallel execution.

Before describing the runtime execution in detail, notice the minimal
changes to the original sequential program. Furthermore, the original pro-
gram remains “unchanged.” When compiled using a non-OpenMP com-
piler, the parallel do directive is simply ignored, and the program
continues to run serially and correctly.

2.3.1 Runtime Execution Model of an OpenMP Program

Let us examine what happens when the saxpy subroutine is invoked.
This is most easily explained through the execution diagram depicted in
Figure 2.2, which presents the execution of our example on four threads.
Each vertical line represents a thread of execution. Time is measured
along the vertical axis and increases as we move downwards along that
axis. As we can see, the original program executes serially, that is, with a
single thread, referred to as the “master thread” in an OpenMP program.
This master thread invokes the saxpy subroutine and encounters the paral-
lel do directive. At this point the master thread creates some additional
threads (three in this example), and together with these additional threads
(often referred to as “slave threads”) forms a team of four parallel threads.
These four threads divide the iterations of the do loop among themselves,
with each thread executing a subset of the total number of iterations.
There is an implicit barrier at the end of the parallel do construct. There-
fore, after finishing its portions of the iterations, each thread waits for the
remaining threads to finish their iterations. Once all the threads have fin-
ished and all iterations have been executed, the barrier condition is com-
plete and all threads are released from the barrier. At this point, the slave
threads disappear and the master thread resumes execution of the code
past the do loop of the parallel do construct.

A “thread” in this discussion refers to an independent locus of control
that executes within the same shared address space as the original sequen-
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tial program, with direct access to all of its variables. OpenMP does not
specify the underlying execution vehicle; that is exclusively an implemen-
tation issue. An OpenMP implementation may choose to provide this
abstraction in any of multiple ways—for instance, one implementation
may map an OpenMP thread onto an operating system process, while
another may map it onto a lightweight thread such as a Pthread. The
choice of implementation does not affect the thread abstraction that we
have just described.

A second issue is the manner in which iterations of the do loop are
divided among the multiple threads. The iterations of the do loop are not
replicated; rather, each thread is assigned a unique and distinct set of iter-
ations to execute. Since the iterations of the do loop are assumed to be
independent and can execute concurrently, OpenMP does not specify how
the iterations are to be divided among the threads; this choice is left to the
OpenMP compiler implementation. However, since the distribution of loop
iterations across threads can significantly affect performance, OpenMP
does supply additional attributes that can be provided with the parallel do
directive and used to specify how the iterations are to be distributed across
threads. These mechanisms are discussed later in Chapters 3 and 6.

2.3.2 Communication and Data Scoping

The shared memory model within OpenMP prescribes that multiple
OpenMP threads execute within the same shared address space; we now

Master thread executes serial portion of the
code.

Master thread enters the saxpy subroutine.

Master thread encounters parallel do directive.
Creates slave threads.

Master and slave threads divide iterations of
parallel do loop and execute them concurrently.

Implicit barrier: Wait for all threads to finish their
iterations.

Master thread resumes execution after the do
loop. Slave threads disappear.

Figure 2.2 Runtime execution of the saxpy parallel program.
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examine the data references in the previous example within this memory
model.

Each iteration of the loop reads the scalar variables a and y, as well as
an element of the array x; it updates the corresponding element of the
array z. What happens when multiple iterations of the loop execute con-
currently on different threads? The variables that are being read—a, y, and
x—can be read directly from shared memory since their values remain
unchanged for the duration of the loop. Furthermore, since each iteration
updates a distinct element of z, updates from different iterations are really
to different memory locations and do not step over each other; these
updates too can be made directly to shared memory. However, the loop
index variable i presents a problem: since each iteration needs a distinct
value for the value of the loop index variable, multiple iterations cannot
use the same memory location for i and still execute concurrently.

This issue is addressed in OpenMP through the notion of private vari-
ables. For a parallel do directive, in OpenMP the default rules state that the
do loop index variable is private to each thread, and all other variable ref-
erences are shared. We illustrate this further in Figure 2.3. The top of the
figure illustrates the data context during serial execution. Only the master
thread is executing, and there is a single globally shared instance of each
variable in the program as shown. All variable references made by the sin-
gle master thread refer to the instance in the global address space.

The bottom of the figure illustrates the context during parallel execu-
tion. As shown, multiple threads are executing concurrently within the
same global address space used during serial execution. However, along
with the global memory as before, every thread also has a private copy of
the variable i within its context. All variable references to variable i within
a thread refer to the private copy of the variable within that thread; refer-
ences to variables other than i, such as a, x, and so on, refer to the in-
stance in global shared memory.

Let us describe the behavior of private variables in more detail. As
shown in the figure, during parallel execution each thread works with a
new, private instance of the variable i. This variable is newly created
within each thread at the start of the parallel construct parallel do. Since a
private variable gets a new memory location with each thread, its initial
value is undefined within the parallel construct. Furthermore, once the
parallel do construct has completed and the master thread resumes serial
execution, all private instances of the variable i disappear, and the master
thread continues execution as before, within the shared address space
including i. Since the private copies of the variable i have disappeared and
we revert back to the single global address space, the value of i is assumed
to be undefined after the parallel construct. 
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This example was deliberately chosen to be simple and does not need
any explicit scoping attributes. The scope of each variable is therefore
automatically determined by the default OpenMP rules. Subsequent exam-
ples in this chapter will present explicit data scoping clauses that may be
provided by the programmer. These clauses allow the programmer to eas-
ily specify the sharing properties of variables in the program for a parallel
construct, and depend upon the implementation to provide the desired
behavior.

2.3.3 Synchronization in the Simple Loop Example

Our simple example did not include any explicit synchronization con-
struct; let us now examine the synchronization requirements of the code
and understand why it still executes correctly.

Synchronization is primarily used to control access to shared objects.
There are two potential synchronization requirements in this example.
First, the shared variable z is modified by multiple threads. However,
recall that since each thread modifies a distinct element of z, there are no

z a x y n i
Global shared
memory

Serial execution
(master thread only)

All data references are to
global shared instances

z

i i i i

a x y n i
Global shared
memory

Each thread has a
private copy of i

References to i are to 
the private copy

Parallel execution
(multiple threads)

References to z , a , x , y , n
are to global shared instances

Figure 2.3 The behavior of private variables in an OpenMP program.
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data conflicts and the updates can proceed concurrently without synchro-
nization.

The second requirement is that all the values for the array z must have
been updated when execution continues after the parallel do loop. Other-
wise the master thread (recall that only the master thread executes the
code after the parallel do construct) may not see the “latest” values of z in
subsequent code because there may still be slave threads executing their
sets of iterations. This requirement is met by the following property of the
parallel do construct in OpenMP: the parallel do directive has an implicit
barrier at its end—that is, each thread waits for all other threads to com-
plete their set of iterations. In particular the master thread waits for all
slave threads to complete, before resuming execution after the parallel do
construct. This in turn guarantees that all iterations have completed, and
all the values of z have been computed.

The default properties of the parallel do construct obviated the need
for explicit synchronization in this example. Later in the chapter we
present more complex codes that illustrate the synchronization constructs
provided in OpenMP.

2.3.4 Final Words on the Simple Loop Example

The kind of parallelism exposed in this example is known as loop-level
parallelism. As we saw, this type of parallelism is relatively easy to express
and can be used to parallelize large codes in a straightforward manner sim-
ply by incrementally parallelizing individual loops, perhaps one at a time.
However, loop-level parallelism does have its limitations. Applications that
spend substantial portions of their execution time in noniterative (i.e., non-
loop) constructs are less amenable to this form of parallelization. Further-
more, each parallel loop incurs the overhead for joining the threads at the
end of the loop. As described above, each join is a synchronization point
where all the threads must wait for the slowest one to arrive. This has a
negative impact on performance and scalability since the program can only
run as fast as the slowest thread in each parallel loop. 

Nonetheless, if the goal is to parallelize a code for a modest-size mul-
tiprocessor, loop-level parallelism remains a very attractive approach. In a
later section we will describe a more general method for parallelizing
applications that can be used for nonloop constructs as well. First, how-
ever, we will consider a slightly more complicated loop and further inves-
tigate the issues that arise in parallelizing loops.
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2.4 A More Complicated Loop

It would be nice if all loops were as simple as the one in Example 2.3,
however, that is seldom the case. In this section we look at a slightly more
complicated loop and how OpenMP is used to address the new issues that
arise. The loop we examine is the outer loop in a Mandelbrot generator. A
Mandelbrot generator is simply a program that determines which points in
a plane belong to the Mandelbrot set. This is done by computing an itera-
tive equation for each point we consider. The result of this calculation can
then be used to color the corresponding pixel to generate the ubiquitous
Mandelbrot image. This is a nice example because the Mandelbrot image
is a visual representation of the underlying computation. However, we
need not overly concern ourselves with the mechanics of computing the
Mandelbrot set but rather focus on the structure of the loop.

real*8 x, y
integer i, j, m, n, maxiter
integer depth(*, *)
integer mandel_val

...
maxiter = 200
do i = 1, m
    do j = 1, n
        x = i/real(m)
        y = j/real(n)
        depth(j, i) = mandel_val(x, y, maxiter)
    enddo
enddo

Example 2.4 presents the sequential code for a Mandelbrot generator.
For simplicity we have left out the code for evaluating the Mandelbrot
equation (it is in the function mandel_val). The code we present is fairly
straightforward: we loop for m points in the i direction and n points in the
j direction, generate an x and y coordinate for each point (here restricted
to the range (0,1]), and then compute the Mandelbrot equation for the
given coordinates. The result is assigned to the two-dimensional array
depth. Presumably this array will next be passed to a graphics routine for
drawing the image.

Our strategy for parallelizing this loop remains the same as for the
saxpy loop—we would like to use the parallel do directive. However, we

Example 2.4 Mandelbrot generator: serial version.
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must first convince ourselves that different iterations of the loop are actu-
ally independent and can execute in parallel, that is, that there are no data
dependences in the loop from one iteration to another. Our brief descrip-
tion of a Mandelbrot generator would indicate that there are no depen-
dences. In other words, the result for computing the Mandelbrot equation
on a particular point does not depend on the result from any other point.
This is evident in the code itself. The function mandel_val only takes x, y,
and maxiter as arguments, so it can only know about the one point it is
working on. If mandel_val included i or j as arguments, then there might
be reason to suspect a dependence because the function could conceivably
reference values for some other point than the one it is currently working
on. Of course in practice we would want to look at the source code for
mandel_val to be absolutely sure there are no dependences. There is
always the possibility that the function modifies global structures not
passed through the argument list, but that is not the case in this example.
As a matter of jargon, a function such as this one that can safely be exe-
cuted in parallel is referred to as being thread-safe. More interesting from a
programming point of view, of course, are those functions that are not
inherently thread-safe but must be made so through the use of synchroni-
zation.

Having convinced ourselves that there are no dependences, let us look
more closely at what the loop is doing and how it differs from the saxpy
loop of Example 2.3. The two loops differ in some fundamental ways.
Additional complexities in this loop include a nested loop, three more sca-
lar variables being assigned ( j, x, and y), and a function call in the inner-
most loop. Let us consider each of these added complexities in terms of
our runtime execution model.

Our understanding of the parallel do/end parallel do directive pair is
that it will take the iterations of the enclosed loop, divide them among
some number of parallel threads, and let each parallel thread execute its
set of iterations. This does not change in the presence of a nested loop or a
called function. Each thread will simply execute the nested loop and call
the function in parallel with the other threads. So as far as control con-
structs are concerned, given that the called function is thread-safe, there is
no additional difficulty on account of the added complexity of the loop.

As one may suspect, things are not so simple with the data environ-
ment. Any time we have variables being assigned values inside a parallel
loop, we need to concern ourselves with the data environment. We know
from the saxpy example that by default the loop index variable i will be
private and everything else in the loop will be shared. This is appropriate
for m and n since they are only read across different iterations and don’t
change in value from one iteration to the next. Looking at the other vari-
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ables, though, the default rules are not accurate. We have a nested loop
index variable j, and as a rule loop index variables should be private. The
reason of course is that we want each thread to work on its own set of iter-
ations. If j were shared, we would have the problem that there would be
just one “global” value (meaning the same for all threads) for j. Conse-
quently, each time a thread would increment j in its nested loop, it would
also inadvertently modify the index variable for all other threads as well.
So j must be a private variable within each thread. We do this with the pri-
vate clause by simply specifying private(j) on the parallel do directive.
Since this is almost always the desired behavior, loop index variables in
Fortran are treated as having private scope by default, unless specified
otherwise.1

What about the other variables, x and y? The same reasoning as above
leads us to conclude that these variables also need to be private. Consider
that i and j are private, and x and y are calculated based on the values of i
and j; therefore it follows that x and y should be private. Alternatively,
remember that x and y store the coordinates for the point in the plane for
which we will compute the Mandelbrot equation. Since we wish each
thread to work concurrently on a set of points in the plane, we need to
have “parallel” (meaning here “multiple”) storage for describing a point
such that each thread can work independently. Therefore we must specify
x and y to be private.

Finally we must consider synchronization in this loop. Recall that the
main use of synchronization is to control access to shared objects. In the
saxpy example, the only synchronization requirement was an implicit bar-
rier at the close of the parallel do. This example is no different. There are
two shared objects, maxiter and depth. The variable maxiter is only read
and never written (we would need to check the mandel_val function to
confirm this); consequently there is no reason or need to synchronize ref-
erences to this shared variable. On the other hand, the array depth is mod-
ified in the loop. However, as with the saxpy example, the elements of the
array are modified independently by each parallel thread, so the only syn-
chronization necessary is at the end of the loop. In other words, we cannot
allow the master thread to reference the depth array until all the array ele-
ments have been updated. This necessitates a barrier at the end of the
loop, but we do not have to explicitly insert one since it is implicit in the
end parallel do directive.

1 This is actually a tricky area where the Fortran default rules differ from the C/C++ rules. In
Fortran, the compiler will make j private by default, but in C/C++ the programmer must
declare it private. Chapter 3 discusses the default rules for Fortran and C/C++ in greater
detail.
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At this point we are ready to present the parallelized version of Exam-
ple 2.4. As with the saxpy example, we parallelized the loop in Example
2.5 with just the parallel do directive. We also see our first example of the
private clause. There are many more ways to modify the behavior of the
parallel do directive; these are described in Chapter 3.

      maxiter = 200
!$omp parallel do private(j, x, y)
      do i = 1, m
         do j = 1, n
            x = i/real(m)
            y = j/real(n)
            depth(j, i) = mandel_val(x, y, maxiter)
         enddo
      enddo
!$omp end parallel do 

2.5 Explicit Synchronization

In Section 2.3 we introduced the concept of synchronization in the context
of a simple parallel loop. We elaborated on this concept in Section 2.4
with a slightly more complicated loop in our Mandelbrot example. Both of
those loops presented just examples of implicit synchronization. This sec-
tion will extend the Mandelbrot example to show why explicit synchroni-
zation is sometimes needed, and how it is specified.

To understand this example we need to describe the mandel_val func-
tion in greater detail. The Mandelbrot equation (what is computed by
mandel_val) is an iterative equation. This means that mandel_val itera-
tively computes the result for this equation until the result either has
diverged or maxiter iterations have executed. The actual number of itera-
tions executed is the value returned by mandel_val and assigned to the
array depth(i,j).

Imagine that, for whatever reason, it is important to know the total
number of iterations executed by the Mandelbrot generator. One way to do
this is to sum up the value for depth as it is computed. The sequential
code to do this is trivial: we add a variable total_iters, which is initialized
to zero, and we add into it each value of depth that we compute. The
sequential code now looks like Example 2.6.

maxiter = 200
total_iters = 0

Example 2.5 Mandelbrot generator: parallel OpenMP version.

Example 2.6 Mandelbrot generator: computing the iteration count.
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do i = 1, m
    do j = 1, n
        x = i/real(m)
        y = j/real(n)
        depth(j, i) = mandel_val(x, y, maxiter)
        total_iters = total_iters + depth(j, i)
    enddo
enddo

How does this change our parallel version? One might think this is
pretty easy—we simply make total_iters a shared variable and leave every-
thing else unchanged. This approach is only partially correct. Although
total_iters needs to be shared, we must pay special attention to any shared
variable that is modified in a parallel portion of the code. When multiple
threads write to the same variable, there is no guaranteed order among the
writes by the multiple threads, and the final value may only be one of a
set of possible values. For instance, consider what happens when the loop
executes with two threads. Both threads will simultaneously read the
value stored in total_iters, add in their value of depth(j,i), and write out
the result to the single storage location for total_iters. Since the threads
execute asynchronously, there is no guarantee as to the order in which the
threads read or write the result. It is possible for both threads to read the
same value of total_iters, in which case the final result will contain the
increment from only one thread rather than both. Another possibility is
that although total_iters is read by the threads one after the other, one
thread reads an earlier (and likely smaller) value but writes its updated
result later after the other thread. In this case the update executed by the
other thread is lost and we are left with an incorrect result. 

This phenomenon is known as a race condition on accesses to a
shared variable. Such accesses to a shared variable must be controlled
through some form of synchronization that allows a thread exclusive
access to the shared variable. Having exclusive access to the variable
enables a thread to atomically perform its read, modify, and update opera-
tion on the variable. This mutual exclusion synchronization is expressed
using the critical construct in OpenMP.

The code enclosed by the critical/end critical directive pair in Example
2.7 can be executed by only one thread at a time. The first thread to reach
the critical directive gets to execute the code. Any other threads wanting to
execute the code must wait until the current thread exits the critical sec-
tion. This means that only one thread at a time can update the value of
total_iters, so we are assured that total_iters always stores the latest result
and no updates are lost. On exit from the parallel loop, total_iters will
store the correct result.
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!$omp critical
    total_iters = total_iters + depth(j, i)
!$omp end critical

The critical/end critical directive pair is an example of explicit syn-
chronization. It must be specifically inserted by the programmer solely for
synchronization purposes in order to control access to the shared variable
total_iters. The previous examples of synchronization have been implicit
because we did not explicitly specify them but rather the system inserted
them for us.

Figure 2.4 shows a schematic for the parallel execution of this loop
with the critical section. The schematic is somewhat simplified. It assumes
that all threads reach the critical region at the same time and shows only
one execution through the critical section. Nonetheless it should be clear
that inserting a critical section into a parallel loop can have a very nega-
tive impact on performance because it may force other threads to tempo-
rarily halt their execution.

Example 2.7 Counting within a critical section.

Critical section

Waiting to enter
critical section

Although each thread
executes a critical
section, only one critical
section executes at any one
time, assuring mutual
exclusion.

Figure 2.4 Parallel loop with a critical section.
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OpenMP includes a rich set of synchronization directives as well as a
full lock interface for more general kinds of locking than the simple
mutual exclusion presented here. Synchronization is covered in greater
detail in Chapter 5. 

2.6 The reduction Clause

In Example 2.7 we saw a critical section being used to protect access to a
shared variable. The basic operation we are executing on that variable is a
sum reduction. Reductions are a sufficiently common type of operation
that OpenMP includes a reduction data scope clause just to handle them.
Using the reduction clause, we can rewrite Example 2.7 as. shown in
Example 2.8.

      maxiter = 200
      total_iters = 0

!$omp parallel do private(j, x, y) 
!$omp+ reduction(+:total_iters)
      do i = 1, m
         do j = 1, n
            x = i/real(m)
            y = j/real(n)
            depth(j, i) = mandel_val(x, y, maxiter)
            total_iters = total_iters + depth(j, i)
         enddo
      enddo
!$omp end parallel do

All we have done here is add the clause reduction (+:total_iters),
which tells the compiler that total_iters is the target of a sum reduction
operation. The syntax allows for a large variety of reductions to be
specified.

The compiler, in conjunction with the runtime environment, will
implement the reduction in an efficient manner tailored for the target
machine. The compiler can best address the various system-dependent
performance considerations, such as whether to use a critical section or
some other form of communication. It is therefore beneficial to use the
reduction attribute where applicable rather than “rolling your own.”

The reduction clause is an actual data attribute distinct from either
shared or private. The reduction variables have elements of both shared

Example 2.8 Using the reduction clause.
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and private, but are really neither. In order to fully understand the reduc-
tion attribute we need to expand our runtime model, specifically the data
environment part of it. We defer this discussion to Chapter 3, where the
reduction clause is discussed in greater detail.

2.7 Expressing Parallelism with Parallel Regions

So far we have been concerned purely with exploiting loop-level parallel-
ism. This is generally considered fine-grained parallelism. The term refers
to the unit of work executed in parallel. In the case of loop-level parallel-
ism, the unit of work is typically small relative to the program as a whole.
Most programs involve many loops; if the loops are parallelized individu-
ally, then the amount of work done in parallel (before the parallel threads
join with the master thread) is limited to the work of a single loop. 

In this section we approach the general problem of parallelizing a pro-
gram that needs to exploit coarser-grained parallelism than possible with
the simple loop-level approach described in the preceding sections. To do
this we will extend our now familiar example of the Mandelbrot generator. 

Imagine that after computing the Mandelbrot set we wish to dither the
depth array in order to soften the resulting image. We could extend our
sequential Mandelbrot program as shown in Example 2.9. Here we have
added a second array, dith_depth(m,n), to store the result from dithering
the depth array. 

real x, y
integer i, j, m, n, maxiter
integer depth(*, *), dith_depth(*, *)
integer mandel_val

maxiter = 200
do i = 1, m
    do j = 1, n
        x = i/real(m)
        y = j/real(n)
        depth(j, i) = mandel_val(x, y, maxiter)
    enddo
enddo
do i = 1, m
    do j = 1, n
        dith_depth(j, i) = 0.5 * depth(j, i) + 
$            0.25 * (depth(j – 1, i) + depth(j + 1, i))
    enddo
enddo

Example 2.9 Mandelbrot generator: dithering the image.
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How would we parallelize this example? Applying our previous strat-
egy, we would parallelize each loop nest individually using a parallel do
directive. Since we are dithering values only along the j direction, and not
along the i direction, there are no dependences on i and we could parallel-
ize the outer dithering loop simply with a parallel do directive. However,
this would unnecessarily force the parallel threads to synchronize, join,
and fork again between the Mandelbrot loop and the dithering loop.

Instead, we would like to have each thread move on to dithering its
piece of the depth array as soon as its piece has been computed. This
requires that rather than joining the master thread at the end of the first
parallel loop, each thread continues execution past the computation loop
and onto its portion of the dithering phase. OpenMP supports this feature
through the concept of a parallel region and the parallel/end parallel
directives.

The parallel and end parallel directives define a parallel region. The
block of code enclosed by the parallel/end parallel directive pair is exe-
cuted in parallel by a team of threads initially forked by the parallel direc-
tive. This is simply a generalization of the parallel do/end parallel do
directive pair; however, instead of restricting the enclosed block to a do
loop, the parallel/end parallel directive pair can enclose any structured
block of Fortran statements. The parallel do directive is actually just a par-
allel directive immediately followed by a do directive, which of course
implies that one or more do directives (with corresponding loops) could
appear anywhere in a parallel region. This distinction and its ramifications
are discussed in later chapters.

Our runtime model from Example 2.3 remains unchanged in the pres-
ence of a parallel region. The parallel/end parallel directive pair is a con-
trol structure that forks a team of parallel threads with individual data
environments to execute the enclosed code concurrently. This code is rep-
licated across threads. Each thread executes the same code, although they
do so asynchronously. The threads and their data environments disappear
at the end parallel directive when the master thread resumes execution.

We are now ready to parallelize Example 2.9. For simplicity we con-
sider execution with just two parallel threads. Generalizing to an arbitrary
number of parallel threads is fairly straightforward but would clutter the
example and distract from the concepts we are trying to present. Example
2.10 presents the parallelized code.

      maxiter = 200
!$omp parallel 
!$omp+ private(i, j, x, y)
!$omp+ private (my_width, my_thread, i_start, i_end)

Example 2.10 Mandelbrot generator: parallel version.



38 Chapter 2—Getting Started with OpenMP

      my_width = m/2
      my_thread = omp_get_thread_num()
      i_start = 1 + my_thread * my_width
      i_end = i_start + my_width – 1
      do i = i_start, i_end
         do j = 1, n
            x = i/real(m)
            y = j/real(n)
            depth(j, i) = mandel_val(x, y, maxiter)
         enddo
      enddo

      do i = i_start, i_end
         do j = 1, n
            dith_depth(j, i) = 0.5 * depth(j, i) + &
                 0.25 * (depth(j – 1, i) + depth(j + 1, i))
         enddo
      enddo
!$omp end parallel

Conceptually what we have done in Example 2.10 is divided the plane
into two horizontal strips and forked a parallel thread for each strip. Each
parallel thread first executes the Mandelbrot loop and then the dithering
loop. Each thread works only on the points in its strip.

OpenMP allows users to specify how many threads will execute a par-
allel region with two different mechanisms: either through the omp_
set_num_threads() runtime library procedure, or through the OMP_NUM_
THREADS environment variable. In this example we assume the user has
set the environment variable to the value 2. 

The omp_ get_thread_num() function is part of the OpenMP runtime
library. This function returns a unique thread number (thread numbering
begins with 0) to the caller. To generalize this example to an arbitrary
number of threads, we also need the omp_ get_num_threads() function,
which returns the number of threads forked by the parallel directive. Here
we assume for simplicity only two threads will execute the parallel region.
We also assume the scalar m (the do i loop extent) is evenly divisible by 2.
These assumptions make it easy to compute the width for each strip
(stored in my_width).

A consequence of our coarse-grained approach to parallelizing this
example is that we must now manage our own loop extents. This is neces-
sary because the do i loop now indexes points in a thread’s strip and not
in the entire plane. To manage the indexing correctly, we compute new
start and end values (i_start and i_end) for the loop that span only the
width of a thread’s strip. You should convince yourself that the example
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computes the i_start and i_end values correctly, assuming my_thread is
numbered either 0 or 1.

With the modified loop extents we iterate over the points in each
thread’s strip. First we compute the Mandelbrot values, and then we
dither the values of each row (do j loop) that we computed. Because there
are no dependences along the i direction, each thread can proceed directly
from computing Mandelbrot values to dithering without any need for syn-
chronization.

You may have noticed a subtle difference in our description of paral-
lelization with parallel regions. In previous discussions we spoke of
threads working on a set of iterations of a loop, whereas here we have
been describing threads as working on a section of an array. The distinc-
tion is important. The iterations of a loop have meaning only for the extent
of the loop. Once the loop is completed, there are no more iterations to
map to parallel threads (at least until the next loop begins). An array, on
the other hand, will have meaning across many loops. When we map a
section of an array to a parallel thread, that thread has the opportunity to
execute all the calculations on its array elements, not just those of a single
loop. In general, to parallelize an application using parallel regions, we
must think of decomposing the problem in terms of the underlying data
structures and mapping these to the parallel threads. Although this
approach requires a greater level of analysis and effort from the program-
mer, it usually leads to better application scalability and performance. This
is discussed in greater detail in Chapter 4.

2.8 Concluding Remarks

This chapter has presented a broad overview of OpenMP, beginning with
an abstracted runtime model and subsequently using this model to paral-
lelize a variety of examples. The OpenMP runtime abstraction has three
elements: control structures, data environment, and synchronization. By
understanding how these elements participate when executing an
OpenMP program, we can deduce the runtime behavior of a parallel pro-
gram and ultimately parallelize any sequential program.

Two different kinds of parallelization have been described. Fine-
grained, or loop-level, parallelism is the simplest to expose but also has
limited scalability and performance. Coarse-grained parallelism, on the
other hand, demonstrates greater scalability and performance but requires
more effort to program. Specifically, we must decompose the underlying
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data structures into parallel sections that threads can work on indepen-
dently. OpenMP provides functionality for exposing either fine-grained or
coarse-grained parallelism. The next two chapters are devoted to describ-
ing the OpenMP functionality for each of these two forms of parallelism.

2.9 Exercises

1. Write a program that breaks sequential semantics (i.e., it produces dif-
ferent results when run in parallel with a single thread versus run
sequentially).

2. Parallelize Example 2.2 without using a parallel do directive.

3. In the early 1990s there was a popular class of parallel computer
architecture known as the single-instruction multiple-data (SIMD)
architecture. The classification applied to systems where a single
instruction would act on parallel sets of data. In our runtime model,
this would be akin to having a single thread with multiple data envi-
ronments. How should Example 2.3 be changed to execute as an SIMD
program?

4. Why does Example 2.4 store the result of mandel_val in depth(j,i) as
opposed to depth(i,j)? Does it matter for correctness of the loop?

5. Parallelize Example 2.6 without using a critical section or a reduction
attribute. To do this you will need to add a shared array to store the
partial sums for each thread, and then add up the partial sums outside
the parallel loop. Chapter 6 describes a performance problem known
as false sharing. Is this problem going to affect the performance of the
parallelized code?

6. Generalize Example 2.10 to run on an arbitrary number of threads.
Make sure it will compute the correct loop extents regardless of the
value of m or the number of threads. Include a print statement before
the first loop that displays the number of threads that are executing.
What happens if the OMP_NUM_THREADS environment variable is
not set when the program is run?
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3.1 Introduction

MANY TYPICAL PROGRAMS IN SCIENTIFIC AND ENGINEERING application
domains spend most of their time executing loops, in particular, do loops
in Fortran and for loops in C. We can often reduce the execution time of
such programs by exploiting loop-level parallelism, by executing iterations
of the loops concurrently across multiple processors. In this chapter we
focus on the issues that arise in exploiting loop-level parallelism, and how
they may be addressed using OpenMP.

OpenMP provides the parallel do directive for specifying that a loop be
executed in parallel. Many programs can be parallelized successfully just
by applying parallel do directives to the proper loops. This style of fine-
grained parallelization is especially useful because it can be applied incre-
mentally: as specific loops are found to be performance bottlenecks, they
can be parallelized easily by adding directives and making small, localized
changes to the source code. Hence the programmer need not rewrite the
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entire application just to parallelize a few performance-limiting loops.
Because incremental parallelization is such an attractive technique, parallel
do is one of the most important and frequently used OpenMP directives.

However, the programmer must choose carefully which loops to paral-
lelize. The parallel version of the program generally must produce the same
results as the serial version; in other words, the correctness of the program
must be maintained. In addition, to maximize performance the execution
time of parallelized loops should be as short as possible, and certainly not
longer than the original serial version of the loops.

This chapter describes how to make effective use of the parallel do
directive to parallelize loops in a program. We start off in Section 3.2 by
discussing the syntactic form and usage of the parallel do directive. We
give an overview of the various clauses that can be added to the directive
to control the behavior of a parallel loop. We also identify the restrictions
on the loops that may be parallelized using this directive. Section 3.3
reviews the runtime execution model of the parallel do directive. Section
3.4 describes the data scoping clauses in OpenMP. These scope clauses
control the sharing behavior of program variables between multiple
threads, such as whether a variable is shared by multiple threads or pri-
vate to each thread. The first part of Section 3.5 shows how to determine
whether it is safe to parallelize a loop, based upon the presence or
absence of data dependences. Then, a number of techniques are presented
for making loops parallelizable by breaking data dependences, using a
combination of source code transformations and OpenMP directives.
Finally, Section 3.6 describes two issues that affect the performance of
parallelized loops—excessive parallel overhead and poor load balancing—
and describes how these issues may be addressed by adding performance-
tuning clauses to the parallel do directive.

By the end of the chapter, you will have gained a basic understanding
of some techniques for speeding up a program by incrementally paralleliz-
ing its loops, and you will recognize some of the common pitfalls to be
avoided.

3.2 Form and Usage of the parallel do Directive

Figure 3.1 shows a high-level view of the syntax of the parallel do directive
in Fortran, while Figure 3.2 shows the corresponding syntax of the parallel
for directive in C and C++. The square bracket notation ([. . .]) is used to
identify information that is optional, such as the clauses or the end paral-
lel do directive. Details about the contents of the clauses are presented in
subsequent sections in this chapter.
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In Fortran, the parallel do directive parallelizes the loop that immedi-
ately follows it, which means there must be a statement following the
directive, and that statement must be a do loop. Similarly, in C and C++
there must be a for loop immediately following the parallel for directive.
The directive extends up to the end of the loop to which it is applied. In
Fortran only, to improve the program’s readability, the end of the loop may
optionally be marked with an end parallel do directive.

3.2.1 Clauses

OpenMP allows the execution of a parallel loop to be controlled
through optional clauses that may be supplied along with the parallel do
directive. We briefly describe the various kinds of clauses here and defer a
detailed explanation for later in this chapter:

• Scoping clauses (such as private or shared) are among the most com-
monly used. They control the sharing scope of one or more variables
within the parallel loop. All the flavors of scoping clauses are covered
in Section 3.4.

• The schedule clause controls how iterations of the parallel loop are
distributed across the team of parallel threads. The choices for sched-
uling are described in Section 3.6.2.

• The if clause controls whether the loop should be executed in parallel
or serially like an ordinary loop, based on a user-defined runtime test.
It is described in Section 3.6.1.

!$omp parallel do [clause [,] [clause ...]]
    do index = first , last [, stride]
        body of the loop
    enddo
[!$omp end parallel do]

Figure 3.1 Fortran syntax for the parallel do directive.

#pragma omp parallel for [clause [clause ...]]
    for (index = first ; test_expr ; increment_expr) {
        body of the loop
    }

Figure 3.2 C/C++ syntax for the parallel for directive.
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• The ordered clause specifies that there is ordering (a kind of synchro-
nization) between successive iterations of the loop, for cases when the
iterations cannot be executed completely in parallel. It is described in
Section 5.4.2.

• The copyin clause initializes certain kinds of private variables (called
threadprivate variables) at the start of the parallel loop. It is described
in Section 4.4.2.

Multiple scoping and copyin clauses may appear on a parallel do; gen-
erally, different instances of these clauses affect different variables that
appear within the loop. The if, ordered, and schedule clauses affect execu-
tion of the entire loop, so there may be at most one of each of these. The
section that describes each of these kinds of clauses also defines the
default behavior that occurs when that kind of clause does not appear on
the parallel loop.

3.2.2 Restrictions on Parallel Loops

OpenMP places some restrictions on the kinds of loops to which the
parallel do directive can be applied. Generally, these restrictions make it
easier for the compiler to parallelize loops as efficiently as possible. The
basic principle behind them is that it must be possible to precisely com-
pute the trip-count, or number of times a loop body is executed, without
actually having to execute the loop. In other words, the trip-count must be
computable at runtime based on the specified lower bound, upper bound,
and stride of the loop.

In a Fortran program the parallel do directive must be followed by a do
loop statement whose iterations are controlled by an index variable. It can-
not be a do-while loop, a do loop that lacks iteration control, or an array
assignment statement. In other words, it must start out like this:

DO index = lowerbound, upperbound [, stride]

In a C program, the statement following the parallel for pragma must
be a for loop, and it must have canonical shape, so that the trip-count can
be precisely determined. In particular, the loop must be of the form

for (index = start ; index < end ; increment_expr)

The index must be an integer variable. Instead of less-than (“<”), the
comparison operator may be “<=”, “>”, or “>=”. The start and end
values can be any numeric expression whose value does not change dur-
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ing execution of the loop. The increment_expr must change the value of
index by the same amount after each iteration, using one of a limited set
of operators. Table 3.1 shows the forms it can take. In the table, incr is a
numeric expression that does not change during the loop.

In addition to requiring a computable trip-count, the parallel do
directive requires that the program complete all iterations of the loop;
hence, the program cannot use any control flow constructs that exit the
loop before all iterations have been completed. In other words, the loop
must be a block of code that has a single entry point at the top and a sin-
gle exit point at the bottom. For this reason, there are restrictions on what
constructs can be used inside the loop to change the flow of control. In
Fortran, the program cannot use an exit or goto statement to branch out
of the loop. In C the program cannot use a break or goto to leave the loop,
and in C++ the program cannot throw an exception from inside the loop
that is caught outside. Constructs such as cycle in Fortran and continue in
C that complete the current iteration and go on to the next are permitted,
however. The program may also use a goto to jump from one statement
inside the loop to another, or to raise a C++ exception (using throw) so
long as it is caught by a try block somewhere inside the loop body.
Finally, execution of the entire program can be terminated from within
the loop using the usual mechanisms: a stop statement in Fortran or a call
to exit in C and C++.

The other OpenMP directives that introduce parallel constructs share
the requirement of the parallel do directive that the code within the lexical
extent constitute a single-entry/single-exit block. These other directives
are parallel, sections, single, master, critical, and ordered. Just as in the
case of parallel do, control flow constructs may be used to transfer control
to other points within the block associated with each of these parallel con-
structs, and a stop or exit terminates execution of the entire program, but
control may not be transferred to a point outside the block.

Operator Forms of increment_expr

++ index++ or ++index
–– index–– or ––index
+= index += incr

–= index –= incr

= index = index + incr or index = incr + index or 
index = index – incr

Table 3.1 Increment expressions for loops in C.
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3.3 Meaning of the parallel do Directive

Chapter 2 showed how to use directives for incremental parallelization of
some simple examples and described the behavior of the examples in
terms of the OpenMP runtime execution model. We briefly review the key
features of the execution model before we study the parallel do directive in
depth in this chapter. You may find it useful to refer back to Figures 2.2
and 2.3 now to get a concrete picture of the following execution steps of a
parallel loop.

Outside of parallel loops a single master thread executes the program
serially. Upon encountering a parallel loop, the master thread creates a
team of parallel threads consisting of the master along with zero or more
additional slave threads. This team of threads executes the parallel loop
together. The iterations of the loop are divided among the team of threads;
each iteration is executed only once as in the original program, although a
thread may execute more than one iteration of the loop. During execution
of the parallel loop, each program variable is either shared among all
threads or private to each thread. If a thread writes a value to a shared
variable, all other threads can read the value, whereas if it writes a value
to a private variable, no other thread can access that value. After a thread
completes all of its iterations from the loop, it waits at an implicit barrier
for the other threads to complete their iterations. When all threads are fin-
ished with their iterations, the slave threads stop executing, and the mas-
ter continues serial execution of the code following the parallel loop.

3.3.1 Loop Nests and Parallelism

When the body of one loop contains another loop, we say that the
second loop is nested inside the first, and we often refer to the outer loop
and its contents collectively as a loop nest. When one loop in a loop nest is
marked by a parallel do directive, the directive applies only to the loop
that immediately follows the directive. The behavior of all of the other
loops remains unchanged, regardless of whether the loop appears in the
serial part of the program or is contained within an outermore parallel
loop: all iterations of loops not preceded by the parallel do are executed by
each thread that reaches them.

Example 3.1 shows two important, common instances of paralleliz-
ing one loop in a multiple loop nest. In the first subroutine, the j loop is
executed in parallel, and each iteration computes in a(0, j) the sum of
elements from a(1, j) to a(M, j). The iterations of the i loop are not par-
titioned or divided among the threads; instead, each thread executes all
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M iterations of the i loop each time it reaches the i loop. In the second
subroutine, this pattern is reversed: the outer j loop is executed serially,
one iteration at a time. Within each iteration of the j loop a team of
threads is formed to divide up the work within the inner i loop and com-
pute a new column of elements a(1:M, j) using a simple smoothing func-
tion. This partitioning of work in the i loop among the team of threads is
called work-sharing. Each iteration of the i loop computes an element
a(i, j) of the new column by averaging the corresponding element a(i,
j – 1) of the previous column with the corresponding elements a(i – 1,
j – 1)and a(i + 1, j – 1) from the previous column.

      subroutine sums(a, M, N)
      integer M, N, a(0:M, N), i, j

!$omp parallel do
      do j = 1, N
         a(0, j) = 0
         do i = 1, M
            a(0, j) = a(0, j) + a(i, j)
         enddo
      enddo
      end

      subroutine smooth(a, M, N)
      integer M, N, a(0:M + 1, 0:N), i, j

      do j = 1, N
!$omp parallel do
         do i = 1, M
            a(i, j) = (a(i – 1, j – 1) + a(i, j – 1) + &
                      a(i + 1, j – 1))/3.0
         enddo
      enddo
      end

3.4 Controlling Data Sharing

Multiple threads within an OpenMP parallel program execute within the
same shared address space and can share access to variables within this
address space. Sharing variables between threads makes interthread com-
munication very simple: threads send data to other threads by assigning
values to shared variables and receive data by reading values from them. 

Example 3.1 Parallelizing one loop in a nest.
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In addition to sharing access to variables, OpenMP also allows a vari-
able to be designated as private to each thread rather than shared among
all threads. Each thread then gets a private copy of this variable for the
duration of the parallel construct. Private variables are used to facilitate
computations whose results are different for different threads. 

In this section we describe the data scope clauses in OpenMP that
may be used to control the sharing behavior of individual program vari-
ables inside a parallel construct. Within an OpenMP construct, every vari-
able that is used has a scope that is either shared or private (the other
scope clauses are usually simple variations of these two basic scopes).
This kind of “scope” is different from the “scope” of accessibility of vari-
able names in serial programming languages (such as local, file-level, and
global in C, or local and common in Fortran). For clarity, we will consis-
tently use the term “lexical scope” when we intend the latter, serial pro-
gramming language sense, and plain “scope” when referring to whether
a variable is shared between OpenMP threads. In addition, “scope” is both
a noun and a verb: every variable used within an OpenMP construct has a
scope, and we can explicitly scope a variable as shared or private on an
OpenMP construct by adding a clause to the directive that begins the
construct.

Although shared variables make it convenient for threads to commu-
nicate, the choice of whether a variable is to be shared or private is dic-
tated by the requirements of the parallel algorithm and must be made
carefully. Both the unintended sharing of variables between threads, or,
conversely, the privatization of variables whose values need to be shared,
are among the most common sources of errors in shared memory parallel
programs. Because it is so important to give variables correct scopes,
OpenMP provides a rich set of features for explicitly scoping variables,
along with a well-defined set of rules for implicitly determining default
scopes. These are all of the scoping clauses that can appear on a parallel
construct:

• shared and private explicitly scope specific variables.

• firstprivate and lastprivate perform initialization and finalization of
privatized variables.

• default changes the default rules used when variables are not explic-
itly scoped.

• reduction explicitly identifies reduction variables.

We first describe some general properties of data scope clauses, and
then discuss the individual scope clauses in detail in subsequent sections.
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3.4.1 General Properties of Data Scope Clauses

A data scope clause consists of the keyword identifying the clause
(such as shared or private), followed by a comma-separated list of vari-
ables within parentheses. The data scoping clause applies to all the vari-
ables in the list and identifies the scope of these variables as either shared
between threads or private to each thread.

Any variable may be marked with a data scope clause—automatic
variables, global variables (in C/C++), common block variables or module
variables (in Fortran), an entire common block (in Fortran), as well as for-
mal parameters to a subroutine. However, a data scope clause does have
several restrictions.

The first requirement is that the directive with the scope clause must
be within the lexical extent of the declaration of each of the variables
named within a scope clause; that is, there must be a declaration of the
variable that encloses the directive.

Second, a variable in a data scoping clause cannot refer to a portion of
an object, but must refer to the entire object. Therefore, it is not permitted
to scope an individual array element or field of a structure—the variable
must be either shared or private in its entirety. A data scope clause may be
applied to a variable of type struct or class in C or C++, in which case the
scope clause in turn applies to the entire structure including all of its sub-
fields. Similarly, in Fortran, a data scope clause may be applied to an
entire common block by listing the common block name between slashes
(“/”), thereby giving an explicit scope to each variable within that com-
mon block.

Third, a directive may contain multiple shared or private scope
clauses; however, an individual variable can appear on at most a single
clause—that is, a variable may uniquely be identified as shared or private,
but not both.

Finally, the data scoping clauses apply only to accesses to the named
variables that occur in the code contained directly within the parallel do/
end parallel do directive pair. This portion of code is referred to as the lex-
ical extent of the parallel do directive and is a subset of the larger dynamic
extent of the directive that also includes the code contained within subrou-
tines invoked from within the parallel loop. Data references to variables
that occur within the lexical extent of the parallel loop are affected by the
data scoping clauses. However, references from subroutines invoked from
within the parallel loop are not affected by the scoping clauses in the
dynamically enclosing parallel directive. The rationale for this is simple:
References within the lexical extent are easily associated with the data
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scoping clause in the directly enclosing directive. However, this associa-
tion is far less obvious for references that are outside the lexical scope,
perhaps buried within a deeply nested chain of subroutine calls. Identify-
ing the relevant data scoping clause would be extremely cumbersome and
error prone in these situations. Example 3.2 shows a valid use of scoping
clauses in Fortran.

      COMMON /globals/ a, b, c
      integer i, j, k, count
      real a, b, c, x
      ...
!$omp parallel do private(i, j, k)
!$omp+ shared(count, /globals/)
!$omp+ private(x)

In C++, besides scoping an entire object, it is also possible to scope a
static member variable of a class using a fully qualified name. Example 3.3
shows a valid use of scoping clauses in C++.

class MyClass {
    ...
    static float x;
    ...
};
MyClass arr[N];
int j, k;
...
#pragma omp parallel for shared(MyClass::x, arr) \
    private(j, k)

For the rest of this section, we describe how to use each of the scoping
clauses and illustrate the behavior of each clause through simple exam-
ples. Section 3.5 presents more realistic examples of how to use many of
the clauses when parallelizing real programs.

3.4.2 The shared Clause

The shared scope clause specifies that the named variables should be
shared by all the threads in the team for the duration of the parallel con-
struct. The behavior of shared scope is easy to understand: even within

Example 3.2 Sample scoping clauses in Fortran.

Example 3.3 Sample scoping clauses in C++.
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the parallel loop, a reference to a shared variable from any thread contin-
ues to access the single instance of the variable in shared memory. All
modifications to this variable update the global instance, with the updated
value becoming available to the other threads.

Care must be taken when the shared clause is applied to a pointer
variable or to a formal parameter that is passed by reference. A shared
clause on a pointer variable will mark only the pointer value itself as
shared, but will not affect the memory pointed to by the variable. Derefer-
encing a shared pointer variable will simply dereference the address value
within the pointer variable. Formal parameters passed by reference behave
in a similar fashion, with all the threads sharing the reference to the corre-
sponding actual argument.

3.4.3 The private Clause

The private clause requires that each thread create a private instance
of the specified variable. As we illustrated in Chapter 2, each thread allo-
cates a private copy of these variables from storage within the private exe-
cution context of each thread; these variables are therefore private to each
thread and not accessible by other threads. References to these variables
within the lexical extent of the parallel construct are changed to read or
write the private copy belonging to the referencing thread.

Since each thread has its own copy of private variables, this private
copy is no longer storage associated with the original shared instance of
the variable; rather, references to this variable access a distinct memory
location within the private storage of each thread.

Furthermore, since private variables get new storage for the duration
of the parallel construct, they are uninitialized upon entry to the parallel
region, and their value is undefined. In addition, the value of these vari-
ables after the completion of the parallel construct is also undefined (see
Example 3.4). This is necessary to maintain consistent behavior between
the serial and parallel versions of the code. To see this, consider the serial
instance of the code—that is, when the code is compiled without enabling
OpenMP directives. The code within the loop accesses the single instance
of variables marked private, and their final value is available after the par-
allel loop. However, the parallel version of this same code will access the
private copy of these variables, so that modifications to them within the
parallel loop will not be reflected in the copy of the variable after the par-
allel loop. In OpenMP, therefore, private variables have undefined values
both upon entry to and upon exit from the parallel construct.
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      integer x

      x = ...
!$omp parallel do private(x)
      do i = 1, n
         ! Error! "x" is undefined upon entry, 
         ! and must be defined before it can be used.
         ... = x
      enddo

      ! Error: x is undefined after the parallel loop,
      ! and must be defined before it can be used.
      ... = x 

There are three exceptions to the rule that private variables are unde-
fined upon entry to a parallel loop. The simplest instance is the loop con-
trol variable that takes on successive values in the iteration space during
the execution of the loop. The second concerns C++ class objects (i.e.,
non-plain-old-data or non-POD objects), and the third concerns allocat-
able arrays in Fortran 90. Each of these languages defines an initial status
for the types of variables mentioned above. OpenMP therefore attempts to
provide the same behavior for the private instances of these variables that
are created for the duration of a parallel loop.

In C++, if a variable is marked private and is a variable of class or
struct type that has a constructor, then the variable must also have an
accessible default constructor and destructor. Upon entry to the parallel
loop when each thread allocates storage for the private copy of this vari-
able, each thread also invokes this default constructor to construct the pri-
vate copy of the object. Upon completion of the parallel loop, the private
instance of each object is destructed using the default destructor. This cor-
rectly maintains the C++ semantics for construction/destruction of these
objects when new copies of the object are created within the parallel loop.

In Fortran 90, if an allocatable array is marked private, then the serial
copy before the parallel construct must be unallocated. Upon entry to the
parallel construct, each thread gets a private unallocated copy of the array.
This copy must be allocated before it can be used and must be explicitly
deallocated by the program at the end of the parallel construct. The original
serial copy of this array after the parallel construct is again unallocated.
This preserves the general unallocated initial status of allocatable arrays.
Furthermore, it means you must allocate and deallocate such arrays within
the parallel loop to avoid memory leakage.

Example 3.4 Behavior of private variables.
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None of these issues arise with regard to shared variables. Since these
variables are shared among all the threads, all references within the parallel
code continue to access the single shared location of the variable as in the
serial code. Shared variables therefore continue to remain available both
upon entry to the parallel construct as well as after exiting the construct.

Since each thread needs to create a private copy of the named vari-
able, it must be possible to determine the size of the variable based upon
its declaration. In particular, in Fortran if a formal array parameter of
adjustable size is specified in a private clause, then the program must also
fully specify the bounds for the formal parameter. Similarly, in C/C++ a
variable specified as private must not have an incomplete type. Finally, the
private clause may not be applied to C++ variables of reference type;
while the behavior of the data scope clauses is easily deduced for both
ordinary variables and for pointer variables (see below), variables of refer-
ence type raise a whole set of complex issues and are therefore disallowed
for simplicity.

Lastly, the private clause, when applied to a pointer variable, continues
to behave in a consistent fashion. As per the definition of the private
clause, each thread gets a private, uninitialized copy of a variable of the
same type as the original variable, in this instance a pointer typed variable.
This pointer variable is initially undefined and may be freely used to store
memory addresses as usual within the parallel loop. Be careful that the
scoping clause applies just to the pointer in this case; the sharing behavior
of the storage pointed to is determined by the latter’s scoping rules.

With regard to manipulating memory addresses, the only restriction
imposed by OpenMP is that a thread is not allowed to access the private
storage of another thread. Therefore a thread should not pass the address
of a variable marked private to another thread because accessing the pri-
vate storage of another thread can result in undefined behavior. In con-
trast, the heap is always shared among the parallel threads; therefore
pointers to heap-allocated storage may be freely passed across multiple
threads.

3.4.4 Default Variable Scopes

The default scoping rules in OpenMP state that if a variable is used
within a parallel construct and is not scoped explicitly, then the variable is
treated as shared. This is usually the desired behavior for variables that are
read but not modified within the parallel loop—if a variable is assigned
within the loop, then that variable may need to be explicitly scoped, or it
may be necessary to add synchronization around statements that access
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the variable. In this section we first describe the general behavior of heap-
and stack-allocated storage, and then discuss the behavior of different
classes of variables under the default shared rule.

All threads share a single global heap in an OpenMP program. Heap-
allocated storage is therefore uniformly accessible by all threads in a paral-
lel team. On the other hand, each OpenMP thread has its own private
stack that is used for subroutine calls made from within a parallel loop.
Automatic (i.e., stack-allocated) variables within these subroutines are
therefore private to each thread. However, automatic variables in the sub-
routine that contains the parallel loop continue to remain accessible by all
the threads executing the loop and are treated as shared unless scoped
otherwise. This is illustrated in Example 3.5.

      subroutine f 
      real a(N), sum

!$omp parallel do private (sum)
      do i = ...
         ! "a" is shared in the following reference
         ! while sum has been explicitly scoped as 
         ! private

         a(i) = ...
         sum = 0
         call g (sum)
      enddo
      end

      subroutine g (s)
      real b (100), s
      integer i

      do i = ...
         ! "b" and "i" are local stack-allocated 
         ! variables and are therefore private in 
         ! the following references
         b(i) = ...
         s = s + b(i)
      enddo
      end

There are three exceptions to the rule that unscoped variables are made
shared by default. We will first describe these exceptions, then present
detailed examples in Fortran and C/C++ that illustrate the rules. First, cer-
tain loop index variables are made private by default. Second, in subrou-
tines called within a parallel region, local variables and (in C and C++)

Example 3.5 Illustrating the behavior of stack-allocated variables.
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value parameters within the called subroutine are scoped as private. Finally,
in C and C++), an automatic variable declared within the lexical extent of a
parallel region is scoped as private. We discuss each of these in turn.

When executing a loop within a parallel region, if a loop index vari-
able is shared between threads, it is almost certain to cause incorrect
results. For this reason, the index variable of a loop to which a parallel do
or parallel for is applied is scoped by default as private. In addition, in For-
tran only, the index variable of a sequential (i.e., non-work-shared) loop
that appears within the lexical extent of a parallel region is scoped as pri-
vate. In C and C++, this is not the case: index variables of sequential for
loops are scoped as shared by default. The reason is that, as was discussed
in Section 3.2.2, the C for construct is so general that it is difficult for the
compiler to figure out which variables should be privatized. As a result, in
C the index variables of serial loops must explicitly be scoped as private.

Second, as we discussed above, when a subroutine is called from
within a parallel region, then local variables within the called subroutine
are private to each thread. However, if any of these variables are marked
with the save attribute (in Fortran) or as static (in C/C++), then these vari-
ables are no longer allocated on the stack. Instead, they behave like glo-
bally allocated variables and therefore have shared scope.

Finally, C and C++ do not limit variable declarations to function entry
as in Fortran; rather, variables may be declared nearly anywhere within
the body of a function. Such nested declarations that occur within the lex-
ical extent of a parallel loop are scoped as private for the parallel loop.

We now illustrate these default scoping rules in OpenMP. Examples
3.6 and 3.7 show sample parallel code in Fortran and C, respectively, in
which the scopes of the variables are determined by the default rules. For
each variable used in Example 3.6, Table 3.2 lists the scope, how that
scope was determined, and whether the use of the variable within the par-
allel region is safe or unsafe. Table 3.3 lists the same information for
Example 3.7.

      subroutine caller(a, n)
      integer n, a(n), i, j, m

      m = 3
!$omp parallel do
      do i = 1, n
         do j = 1, 5
            call callee(a(i), m, j)
         enddo
      enddo
      end

Example 3.6 Default scoping rules in Fortran.
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      subroutine callee(x, y, z)
      common /com/ c
      integer x, y, z, c, ii, cnt
      save cnt

      cnt = cnt + 1
      do ii = 1, z
         x = y + c
      enddo
      end

void caller(int a[], int n)
{
    int i, j, m = 3;

    #pragma omp parallel for
    for (i = 0; i < n; i++) {
        int k = m;

        for (j = 1; j ≤ 5; j++)
            callee(&a[i], &k, j);
    }
}

extern int c;

void callee(int *x, int *y, int z)
{
    int ii;
    static int cnt;

    cnt++;
    for (ii = 0; ii < z; i++)
        *x = *y + c;
}

3.4.5 Changing Default Scoping Rules

As we described above, by default, variables have shared scope within
an OpenMP construct. If a variable needs to be private to each thread,
then it must be explicitly identified with a private scope clause. If a con-
struct requires that most of the referenced variables be private, then this
default rule can be quite cumbersome since it may require a private clause

Example 3.7 Default scoping rules in C.
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for a large number of variables. As a convenience, therefore, OpenMP pro-
vides the ability to change the default behavior using the default clause on
the parallel construct.

Variable Scope Is Use Safe? Reason for Scope

a shared yes Declared outside parallel construct.
n shared yes Declared outside parallel construct.
i private yes Parallel loop index variable.
j private yes Fortran sequential loop index variable.
m shared yes Declared outside parallel construct.
x shared yes Actual parameter is a, which is shared.
y shared yes Actual parameter is m, which is shared.
z private yes Actual parameter is j, which is private.
c shared yes In a common block.
ii private yes Local stack-allocated variable of called 

subroutine.
cnt shared no Local variable of called subroutine with 

save attribute.

Variable Scope Is Use Safe? Reason for Scope

a shared yes Declared outside parallel construct.
n shared yes Declared outside parallel construct.
i private yes Parallel loop index variable.
j shared no Loop index variable, but not in Fortran.
m shared yes Declared outside parallel construct.
k private yes Auto variable declared inside parallel 

construct.
x private yes Value parameter.
*x shared yes Actual parameter is a, which is shared.
y private yes Value parameter.
*y private yes Actual parameter is k, which is private.
z private yes Value parameter.
c shared yes Declared as extern.
ii private yes Local stack-allocated variable of called 

subroutine.
cnt shared no Declared as static.

Table 3.2 Variable scopes for Fortran default scoping example.

Table 3.3 Variable scopes for C default scoping example.
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The syntax for this clause in Fortran is

default (shared | private | none)

while in C and C++, it is

default (shared | none)

In Fortran, there are three different forms of this clause: default
(shared), default(private), and default(none). At most one default clause
may appear on a parallel region. The simplest to understand is default
(shared), because it does not actually change the scoping rules: it says
that unscoped variables are still scoped as shared by default.

The clause default(private) changes the rules so that unscoped vari-
ables are scoped as private by default. For example, if we added a
default(private) clause to the parallel do directive in Example 3.6, then a,
m, and n would be scoped as private rather than shared. Scoping of vari-
ables in the called subroutine callee would not be affected because the
subroutine is outside the lexical extent of the parallel do. The most com-
mon reason to use default(private) is to aid in converting a parallel appli-
cation based on a distributed memory programming paradigm such as
MPI, in which threads cannot share variables, to a shared memory
OpenMP version. The clause default(private) is also convenient when a
large number of scratch variables are used for holding intermediate results
of a computation and must be scoped as private. Rather than listing each
variable in an explicit private clause, default(private) may be used to
scope all of these variables as private. Of course, when using this clause
each variable that needs to be shared must be explicitly scoped using the
shared clause.

The default(none) clause helps catch scoping errors. If default(none)
appears on a parallel region, and any variables are used in the lexical
extent of the parallel region but not explicitly scoped by being listed in a
private, shared, reduction, firstprivate, or lastprivate clause, then the com-
piler issues an error. This helps avoid errors resulting from variables being
implicitly (and incorrectly) scoped.

In C and C++, the clauses available to change default scoping rules
are default(shared) and default(none). There is no default(private) clause.
This is because many C standard library facilities are implemented using
macros that reference global variables. The standard library tends to be
used pervasively in C and C++ programs, and scoping these globals as pri-
vate is likely to be incorrect, which would make it difficult to write porta-
ble, correct OpenMP code using a default(private) scoping rule.
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3.4.6 Parallelizing Reduction Operations

As discussed in Chapter 2, one type of computation that we often
wish to parallelize is a reduction operation. In a reduction, we repeatedly
apply a binary operator to a variable and some other value, and store the
result back in the variable. For example, one common reduction is to com-
pute the sum of the elements of an array:

      sum = 0
!$omp parallel do reduction(+ : sum)
      do i = 1, n
         sum = sum + a(i)
      enddo

and another is to find the largest (maximum) value:

x = a(1)
do i = 2, n
    x = max(x, a(i))
enddo

When computing the sum, we use the binary operator “+”, and to find
the maximum we use the max operator. For some operators (including
“+” and max), the final result we get does not depend on the order in
which we apply the operator to elements of the array. For example, if the
array contained the three elements 1, 4, and 6, we would get the same
sum of 11 regardless of whether we computed it in the order 1 + 4 + 6 or
6 + 1 + 4 or any other order. In mathematical terms, such operators are
said to be commutative and associative.

When a program performs a reduction using a commutative-associa-
tive operator, we can parallelize the reduction by adding a reduction clause
to the parallel do directive. The syntax of the clause is

reduction (redn_oper : var_list)

There may be multiple reduction clauses on a single work-sharing
directive. The redn_oper is one of the built-in operators of the base lan-
guage. Table 3.4 lists the allowable operators in Fortran, while Table 3.5
lists the operators for C and C++. (The other columns of the tables will be
explained below.) The var_list is a list of scalar variables into which we
are computing reductions using the redn_oper. If you wish to perform a
reduction on an array element or field of a structure, you must create a
scalar temporary with the same type as the element or field, perform the
reduction on the temporary, and copy the result back into the element or
field at the end of the loop.
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For example, the parallel version of the sum reduction looks like this:

sum = 0
!$omp parallel do reduction(+ : sum)
do i = 1, n
    sum = sum + a(i)
enddo

Operator Data Types Initial Value

+ integer, floating point 
(complex or real)

0

* integer, floating point 
(complex or real)

1

– integer, floating point 
(complex or real)

0

.AND. logical .TRUE.

.OR. logical .FALSE.

.EQV. logical .TRUE.

.NEQV. logical .FALSE.

MAX integer, floating point (real only) smallest possible value

MIN integer, floating point (real only) largest possible value

IAND integer all bits on

IOR integer 0

IEOR integer 0

Operator Data Types Initial Value

+ integer, floating point 0
* integer, floating point 1
– integer, floating point 0
& integer all bits on

| integer 0

^ integer 0

&& integer 1

|| integer 0

Table 3.4 Reduction operators for Fortran.

Table 3.5 Reduction operators for C/C++.
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At runtime, each thread performs a portion of the additions that make up
the final sum as it executes its portion of the n iterations of the parallel do
loop. At the end of the parallel loop, the threads combine their partial
sums into a final sum. Although threads may perform the additions in an
order that differs from that of the original serial program, the final result
remains the same because of the commutative-associative property of the
“+” operator (though as we will see shortly, there may be slight differ-
ences due to floating-point roundoff errors).

The behavior of the reduction clause, as well as restrictions on its use,
are perhaps best understood by examining an equivalent OpenMP code
that performs the same computation in parallel without using the reduc-
tion clause itself. The code in Example 3.8 may be viewed as a possible
translation of the reduction clause by an OpenMP implementation, al-
though implementations will likely employ other clever tricks to improve
efficiency.

      sum = 0
!$omp parallel private(priv_sum) shared(sum)
      ! holds each thread's partial sum
      priv_sum = 0

!$omp do
      ! same as serial do loop
      ! with priv_sum replacing sum
      do i = 1, n
         ! compute partial sum
         priv_sum = priv_sum + a(i)
      enddo

      ! combine partial sums into final sum
      ! must synchronize because sum is shared
!$omp critical
      sum = sum + priv_sum 
!$omp end critical
!$omp end parallel

As shown in Example 3.8, the code declares a new, private variable
called priv_sum. Within the body of the do loop all references to the origi-
nal reduction variable sum are replaced by references to this private vari-
able. The variable priv_sum is initialized to zero just before the start of the
loop and is used within the loop to compute each thread’s partial sum.
Since this variable is private, the do loop can be executed in parallel. After
the do loop the threads may need to synchronize as they aggregate their
partial sums into the original variable, sum.

Example 3.8 Equivalent OpenMP code for parallelized reduction.
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The reduction clause is best understood in terms of the behavior of the
above transformed code. As we can see, the user only need supply the
reduction operator and the variable with the reduction clause and can
leave the rest of the details to the OpenMP implementation. Furthermore,
the reduction variable may be passed as a parameter to other subroutines
that perform the actual update of the reduction variable; as we can see,
the above transformation will continue to work regardless of whether the
actual update is within the lexical extent of the directive or not. However,
the programmer is responsible for ensuring that any modifications to the
variable within the parallel loop are consistent with the reduction operator
that was specified.

In Tables 3.4 and 3.5, the data types listed for each operator are the
allowed types for reduction variables updated using that operator. For ex-
ample, in Fortran and C, addition can be performed on any floating point
or integer type. Reductions may only be performed on built-in types of
the base language, not user-defined types such as a record in Fortran or
class in C++.

In Example 3.8 the private variable priv_sum is initialized to zero just
before the reduction loop. In mathematical terms, zero is the identity value
for addition; that is, zero is the value that when added to any other value
x, gives back the value x. In an OpenMP reduction, each thread’s partial
reduction result is initialized to the identity value for the reduction opera-
tor. The identity value for each reduction operator appears in the “Initial
Value” column of Tables 3.4 and 3.5.

One caveat about parallelizing reductions is that when the type of the
reduction variable is floating point, the final result may not be precisely
the same as when the reduction is performed serially. The reason is that
floating-point operations induce roundoff errors because floating-point
variables have only limited precision. For example, suppose we add up
four floating-point numbers that are accurate to four decimal digits. If the
numbers are added up in this order (rounding off intermediate results to
four digits):

((0.0004 + 1.000) + 0.0004) + 0.0002 = 1.000

we get a different result from adding them up in this ascending order:

((0.0002 + 0.0004) + 0.0004) + 1.000 = 1.001

For some programs, differences between serial and parallel versions result-
ing from roundoff may be unacceptable, so floating-point reductions in
such programs should not be parallelized.
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Finally, care must be exercised when parallelizing reductions that use
subtraction (“–”) or the C “&&” or “||” operators. Subtraction is in fact not
a commutative-associative operator, so the code to update the reduction
variable must be rewritten (typically replacing “–” by “+”) for the parallel
reduction to produce the same result as the serial one. The C logical oper-
ators “&&” and “||” short-circuit (do not evaluate) their right operand if
the result can be determined just from the left operand. It is therefore not
desirable to have side effects in the expression that updates the reduction
variable because the expression may be evaluated more or fewer times in
the parallel case than in the serial one.

3.4.7 Private Variable Initialization and Finalization

Normally, each thread’s copy of a variable scoped as private on a par-
allel do has an undefined initial value, and after the parallel do the master
thread’s copy also takes on an undefined value. This behavior has the
advantage that it minimizes data copying for the common case in which
we use the private variable as a temporary within the parallel loop. How-
ever, when parallelizing a loop we sometimes need access to the value
that was in the master’s copy of the variable just before the loop, and we
sometimes need to copy the “last” value written to a private variable back
to the master’s copy at the end of the loop. (The “last” value is the value
assigned in the last iteration of a sequential execution of the loop—this
last iteration is therefore called “sequentially last.”)

For this reason, OpenMP provides the firstprivate and lastprivate vari-
ants on the private clause. At the start of a parallel do, firstprivate initializes
each thread’s copy of a private variable to the value of the master’s copy.
At the end of a parallel do, lastprivate writes back to the master’s copy the
value contained in the private copy belonging to the thread that executed
the sequentially last iteration of the loop.

The form and usage of firstprivate and lastprivate are the same as the
private clause: each takes as an argument a list of variables. The variables
in the list are scoped as private within the parallel do on which the clause
appears, and in addition are initialized or finalized as described above. As
was mentioned in Section 3.4.1, variables may appear in at most one scope
clause, with the exception that a variable can appear in both firstprivate
and lastprivate, in which case it is both initialized and finalized.

In Example 3.9, x(1,1) and x(2,1) are assigned before the parallel loop
and only read thereafter, while x(1,2) and x(2,2) are used within the loop
as temporaries to store terms of polynomials. Code after the loop uses the
terms of the last polynomial, as well as the last value of the index variable
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i. Therefore x appears in a firstprivate clause, and both x and i appear in a
lastprivate clause.

      common /mycom/ x, c, y, z
      real x(n, n), c(n, n,), y(n), z(n)
      ...
      ! compute x(1, 1) and x(2, 1)
!$omp parallel do firstprivate(x) lastprivate(i, x)
      do i = 1, n
         x(1, 2) = c(i, 1) * x(1, 1)
         x(2, 2) = c(i, 2) * x(2, 1) ** 2
         y(i) = x(2, 2) + x(1, 2)
         z(i) = x(2, 2) – x(1, 2)
      enddo
      ...
      ! use x(1, 2), x(2, 2), and i

There are two important caveats about using these clauses. The first is
that a firstprivate variable is initialized only once per thread, rather than
once per iteration. In Example 3.9, if any iteration were to assign to x(1,1)
or x(2,1), then no other iteration is guaranteed to get the initial value if it
reads these elements. For this reason firstprivate is useful mostly in cases
like Example 3.9, where part of a privatized array is read-only. The second
caveat is that if a lastprivate variable is a compound object (such as an
array or structure), and only some of its elements or fields are assigned in
the last iteration, then after the parallel loop the elements or fields that
were not assigned in the final iteration have an undefined value.

In C++, if an object is scoped as firstprivate or lastprivate, the initial-
ization and finalization are performed using appropriate member func-
tions of the object. In particular, a firstprivate object is constructed by
calling its copy constructor with the master thread’s copy of the variable
as its argument, while if an object is lastprivate, at the end of the loop the
copy assignment operator is invoked on the master thread’s copy, with the
sequentially last value of the variable as an argument. (It is an error if a
firstprivate object has no publicly accessible copy constructor, or a last-
private object has no publicly accessible copy assignment operator.)
Example 3.10 shows how this works. Inside the parallel loop, each private
copy of c1 is copy-constructed such that its val member has the value 2.
On the last iteration, 11 is assigned to c2.val, and this value is copy-
assigned back to the master thread’s copy of c2.

Example 3.9 Parallel loop with firstprivate and lastprivate variables.
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class C {
public:
    int val;
    // default constructor
    C() { val = 0; }

    C(int _val) { val = _val; }
    // copy constructor
    C(const C &c) { val = c.val; }  
    // copy assignment operator
    C & operator = (const C &c) { 
        val = c.val; 
        return * this;
    }
};

void f () {
    C c1(2), c2(3);
    ...
    #pragma omp for firstprivate(c1) lastprivate(c2)
    for (int i = 0; i < 10; i++) {
        #pragma omp critical
        c2.val = c1.val + i;     // c1.val == 2
    }
    // after the loop, c2.val == 11
}

3.5 Removing Data Dependences

Up to this point in the chapter, we have concentrated on describing
OpenMP’s features for parallelizing loops. For the remainder of the chap-
ter we will mostly discuss how to use these features to parallelize loops
correctly and effectively.

First and foremost, when parallelizing loops it is necessary to main-
tain the program’s correctness. After all, a parallel program is useless if it
produces its results quickly but the results are wrong! The key characteris-
tic of a loop that allows it to run correctly in parallel is that it must not
contain any data dependences. In this section we will explain what data
dependences are and what kinds of dependences there are. We will lay out
a methodology for determining whether a loop contains any data depen-
dences, and show how in many cases these dependences can be removed
by transforming the program’s source code or using OpenMP clauses.

This section provides only a brief glimpse into the topic of data depen-
dences. While we will discuss the general rules to follow to deal correctly
with dependences and show precisely what to do in many common cases,
there are numerous special cases and techniques for handling them that
we do not have space to address. For a more thorough introduction to this

Example 3.10 firstprivate and lastprivate objects in C++.
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topic, and many pointers to further reading, we refer you to Michael
Wolfe’s book [MW 96]. In addition, a useful list of additional simple tech-
niques for finding and breaking dependences appears in Chapter 5 of [SGI
99].

3.5.1 Why Data Dependences Are a Problem

Whenever one statement in a program reads or writes a memory loca-
tion, and another statement reads or writes the same location, and at least
one of the two statements writes the location, we say that there is a data
dependence on that memory location between the two statements. In this
context, a memory location is anything to which the program can assign a
scalar value, such as an integer, character, or floating-point value. Each
scalar variable, each element of an array, and each field of a structure con-
stitutes a distinct memory location. Example 3.11 shows a loop that con-
tains a data dependence: each iteration (except the last) writes an element
of a that is read by the next iteration. Of course, a single statement can
contain multiple memory references (reads and writes) to the same loca-
tion, but it is usually the case that the references involved in a dependence
occur in different statements, so we will assume this from now on. In
addition, there can be dependences on data external to the program, such
as data in files that is accessed using I/O statements, so if you wish to par-
allelize code that accesses such data, you must analyze the code for
dependences on this external data as well as on data in variables.

do i = 2, N
    a(i) = a(i) + a(i – 1)
enddo

For purposes of parallelization, data dependences are important be-
cause whenever there is a dependence between two statements on some
location, we cannot execute the statements in parallel. If we did execute
them in parallel, it would cause what is called a data race. A parallel pro-
gram contains a data race whenever it is possible for two or more state-
ments to read or write the same memory location at the same time, and at
least one of the statements writes the location.

In general, data races cause correctness problems because when we
execute a parallel program that contains a data race, it may not produce
the same results as an equivalent serial program. To see why, consider
what might happen if we try to parallelize the loop in Example 3.11 by
naively applying a parallel do directive. Suppose n is 3, so the loop iterates

Example 3.11 A simple loop with a data dependence.
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just twice, and at the start of the loop, the first three elements of a have
been initialized to the values 1, 2, and 3. After a correct serial execution,
the first three values are 1, 3, and 6. However, in a parallel execution it is
possible for the assignment of the value 3 to a(2) in the first iteration to
happen either before or after the read of a(2) in the second iteration (the
two statements are “racing” each other). If the assignment happens after
the read, a(3) receives an incorrect value of 5.

3.5.2 The First Step: Detection

Now that we have seen why data dependences are a problem, the first
step in dealing with them is to detect any that are present in the loop we
wish to parallelize. Since each iteration executes in parallel, but within a
single iteration statements in the loop body are performed in sequence,
the case that concerns us is a dependence between statements executed in
different iterations of the loop. Such a dependence is called loop-carried.

Because dependences are always associated with a particular memory
location, we can detect them by analyzing how each variable is used
within the loop, as follows:

• Is the variable only read and never assigned within the loop body? If
so, there are no dependences involving it.

• Otherwise, consider the memory locations that make up the variable
and that are assigned within the loop. For each such location, is there
exactly one iteration that accesses the location? If so, there are no
dependences involving the variable. If not, there is a dependence.

To perform this analysis, we need to reason about each memory loca-
tion accessed in each iteration of the loop. Reasoning about scalar vari-
ables is usually straightforward, since they uniquely identify the memory
location being referenced. Reasoning about array variables, on the other
hand, can be tricky because different iterations may access different loca-
tions due to the use of array subscript expressions that vary from one iter-
ation to the next. The key is to recognize that we need to find two different
values of the parallel loop index variable (call them i and i′ ) that both lie
within the bounds of the loop, such that iteration i assigns to some ele-
ment of an array a, and iteration i′ reads or writes that same element of a.
If we can find suitable values for i and i′, there is a dependence involving
the array. If we can satisfy ourselves that there are no such values, there is
no dependence involving the array. As a simple rule of thumb, a loop that
meets all the following criteria has no dependences and can always be
parallelized:
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• All assignments are to arrays.

• Each element is assigned by at most one iteration.

• No iteration reads elements assigned by any other iteration.

When all the array subscripts are linear expressions in terms of i (as is
often the case), we can use the subscript expressions and constraints
imposed by the loop bounds to form a system of linear inequalities whose
solutions identify all of the loop’s data dependences. There are well-
known general techniques for solving systems of linear inequalities, such
as integer programming and Fourier-Motzkin projection. However, discus-
sion of these techniques is beyond the scope of this book, so you should
see [MW 96] for an introduction. Instead, in many practical cases the
loop’s bounds and subscript expressions are simple enough that we can
find these loop index values i and i′ just by inspection. Example 3.11 is
one such case: each iteration i writes element ai, while each iteration
i + 1 reads ai, so clearly there is a dependence between each successive
pair of iterations.

Example 3.12 contains additional common cases that demonstrate how
to reason about dependences and hint at some of the subtleties involved.
The loop at line 10 is quite similar to that in Example 3.11, but in fact con-
tains no dependence: Unlike Example 3.11, this loop has a stride of 2, so it
writes every other element, and each iteration reads only elements that it
writes or that are not written by the loop. The loop at line 20 also contains
no dependences because each iteration reads only the element it writes
plus an element that is not written by the loop since it has a subscript
greater than n/2. The loop at line 30 is again quite similar to that at line 20,
yet there is a dependence because the first iteration reads a(n/2 + 1) while
the last iteration writes this element. Finally, the loop at line 40 uses sub-
scripts that are not linear expressions of the index variable i. In cases like
this we must rely on whatever knowledge we have of the index expression.
In particular, if the index array idx is known to be a permutation array—
that is, if we know that no two elements of idx have the same value (which
is frequently the case for index arrays used to represent linked-list struc-
tures)—we can safely parallelize this loop because each iteration will read
and write a different element of a.

10  do i = 2, n, 2
       a(i) = a(i) + a(i – 1)
    enddo

Example 3.12 Loops with nontrivial bounds and array subscripts.
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20  do i = 1, n/2
       a(i) = a(i) + a(i + n/2)
    enddo

30  do i = 1, n/2 + 1
       a(i) = a(i) + a(i + n/2)
    enddo

40  do i = 1, n
       a(idx(i)) = a(idx(i)) + b(idx(i))
    enddo

Of course, loop nests can contain more than one loop, and arrays can
have more than one dimension. The three-deep loop nest in Example 3.13
computes the product of two matrices C = A × B. For reasons we will
explain later in the chapter, we usually want to parallelize the outermost
loop in such a nest. For correctness, there must not be a dependence
between any two statements executed in different iterations of the parallel-
ized loop. However, there may be dependences between statements exe-
cuted within a single iteration of the parallel loop, including dependences
between different iterations of an inner, serial loop. In this matrix multipli-
cation example, we can safely parallelize the j loop because each iteration
of the j loop computes one column c(1:n, j) of the product and does not
access elements of c that are outside that column. The dependence on
c(i, j) in the serial k loop does not inhibit parallelization.

do j = 1, n
    do i = 1, n
        c(i, j) = 0
        do k = 1, n
            c(i, j) = c(i, j) + a(i, k) * b(k, j)
        enddo
    enddo
enddo

It is important to remember that dependences must be analyzed not
just within the lexical extent of the loop being parallelized, but within its
entire dynamic extent. One major source of data race bugs is that subrou-
tines called within the loop body may assign to variables that would have
shared scope if the loop were executed in parallel. In Fortran, this problem
is typically caused by variables in common blocks, variables with the save
attribute, and module data (in Fortran 90); in C and C++ the usual culprits
are global and static variables. Furthermore, we must also examine how

Example 3.13 Matrix multiplication.



70 Chapter 3—Exploiting Loop-Level Parallelism

subroutines called from a parallel loop use their parameters. There may be
a dependence if a subroutine writes to a scalar output parameter, or if there
is overlap in the portions of array parameters that are accessed by subrou-
tines called from different iterations of the loop. In Example 3.14, the loop
at line 10 cannot be parallelized because each iteration reads and writes the
shared variable cnt in subroutine add. The loop at line 20 has a depen-
dence due to an overlap in the portions of array argument a that are ac-
cessed in the call: subroutine smooth reads both elements of a that are
adjacent to the element it writes, and smooth writes each element of a in
parallel. Finally, the loop at line 30 has no dependences because subroutine
add_count only accesses a(i) and only reads cnt.

    subroutine add(c, a, b)
    common /count/ cnt
    integer c, a, b, cnt

    c = a + b
    cnt = cnt + 1
    end

    subroutine smooth(a, n, i)
    integer n, a(n), i

    a(i) = (a(i) + a(i – 1) + a(i + 1))/3
    end

    subroutine add_count(a, n, i)
    common /count/ cnt
    integer n, a(n), i, cnt

    a(i) = a(i) + cnt
    end

10  do i = 1, n
       call add(c(i), a(i), b(i))
    enddo

20  do i = 2, n – 1
       call smooth(a, n, i)
    enddo

30  do i = 1, n
       call add_count(a, n, i)
    enddo

Example 3.14 Loops containing subroutine calls.
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3.5.3 The Second Step: Classification

Once a dependence has been detected, the next step is to figure out
what kind of dependence it is. This helps determine whether it needs to be
removed, whether it can be removed, and, if it can, what technique to use
to remove it. We will discuss two different classification schemes that are
particularly useful for parallelization.

We mentioned in Section 3.5.2 that dependences may be classified
based on whether or not they are loop-carried, that is, whether or not the
two statements involved in the dependence occur in different iterations of
the parallel loop. A non-loop-carried dependence does not cause a data
race because within a single iteration of a parallel loop, each statement is
executed in sequence, in the same way that the master thread executes
serial portions of the program. For this reason, non-loop-carried depen-
dences can generally be ignored when parallelizing a loop.

One subtle special case of non-loop-carried dependences occurs when
a location is assigned in only some rather than all iterations of a loop. This
case is illustrated in Example 3.15, where the assignment to x is controlled
by the if statement at line 10. If the assignment were performed in every
iteration, there would be just a non-loop-carried dependence between the
assignment and the use of x at line 20, which we could ignore. But
because the assignment is performed only in some iterations, there is in
fact a loop-carried dependence between line 10 in one iteration and line 20
in the next. In other words, because the assignment is controlled by a con-
ditional, x is involved in both a non-loop-carried dependence between
lines 10 and 20 (which we can ignore) and a loop-carried dependence
between the same lines (which inhibits parallelization).

    x = 0
    do i = 1, n
10       if (switch_val(i)) x = new_val(i)
20       a(i) = x
    enddo

There is one other scheme for classifying dependences that is crucial
for parallelization. It is based on the dataflow relation between the two
dependent statements, that is, it concerns whether or not the two state-
ments communicate values through the memory location. Let the state-
ment performed earlier in a sequential execution of the loop be called S1,
and let the later statement be called S2. The kind of dependence that is the

Example 3.15 A loop-carried dependence caused by a conditional.
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most important and difficult to handle is when S1 writes the memory loca-
tion, S2 reads the location, and the value read by S2 in a serial execution is
the same as that written by S1. In this case the result of a computation by
S1 is communicated, or “flows,” to S2, so we call this kind a flow depen-
dence. Because S1 must execute first to produce the value that is con-
sumed by S2, in general we cannot remove the dependence and execute
the two statements in parallel (hence this case is sometimes called a
“true” dependence). However, we will see in Section 3.5.4 that there are
some situations in which we can parallelize loops that contain flow depen-
dences.

In this dataflow classification scheme, there are two other kinds of
dependences. We can always remove these two kinds because they do not
represent communication of data between S1 and S2, but instead are
instances of reuse of the memory location for different purposes at differ-
ent points in the program. In the first of these, S1 reads the location, then
S2 writes it. Because this memory access pattern is the opposite of a flow
dependence, this case is called an anti dependence. As we will see shortly,
we can parallelize a loop that contains an anti dependence by giving each
iteration a private copy of the location and initializing the copy belonging
to S1 with the value S1 would have read from the location during a serial
execution. In the second of the two kinds, both S1 and S2 write the loca-
tion. Because only writing occurs, this is called an output dependence.
Suppose we execute the loop serially, and give the name v to the last value
written to the location. We will show below that we can always parallelize
in the presence of an output dependence by privatizing the memory loca-
tion and in addition copying v back to the shared copy of the location at
the end of the loop.

To make all these categories of dependences clearer, the loop in
Example 3.16 contains at least one instance of each. Every iteration of the
loop is involved in six different dependences, which are listed in Table 3.6.
For each dependence, the table lists the associated memory location and

Memory
Location

Earlier Statement Later Statement
Loop-
carried?

Kind of
DataflowLine Iteration Access Line Iteration Access

x 10 i write 20 i read no flow
x 10 i write 10 i + 1 write yes output

x 20 i read 10 i + 1 write yes anti

a(i + 1) 20 i read 20 i + 1 write yes anti

b(i) 30 i write 30 i + 1 read yes flow

c(2) 40 i write 40 i + 1 write yes output

Table 3.6 List of data dependences present in Example 3.16.
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earlier and later dependent statements (S1 and S2), as well as whether the
dependence is loop-carried and its dataflow classification. The two state-
ments are identified by their line number, iteration number, and the kind
of memory access they perform on the location. Although in reality every
iteration is involved with every other iteration in an anti and an output
dependence on x and an output dependence on c(2), for brevity the table
shows just the dependences between iterations i and i + 1. In addition,
the loop index variable i is only read by the statements in the loop, so we
ignore any dependences involving the variable i. Finally, notice that there
are no dependences involving d because this array is read but not written
by the loop.

    do i = 2, N - 1
10       x = d(i) + i
20       a(i) = a(i + 1) + x
30       b(i) = b(i) + b(i – 1) + d(i – 1)
40       c(2) = 2 * i
    enddo

3.5.4 The Third Step: Removal

With a few exceptions, it is necessary to remove each loop-carried de-
pendence within a loop that we wish to parallelize. Many dependences can
be removed either by changing the scope of the variable involved in the de-
pendence using a clause on the parallel do directive, or by transforming the
program’s source code in a simple manner, or by doing both. We will first
present techniques for dealing with the easier dataflow categories of anti
and output dependences, which can in principle always be removed, al-
though this may sometimes be inefficient. Then we will discuss several
special cases of flow dependences that we are able to remove, while point-
ing out that there are many instances in which removal of flow depen-
dences is either impossible or requires extensive algorithmic changes.

When changing a program to remove one dependence in a parallel
loop, it is critical that you not violate any of the other dependences that
are present. In addition, if you introduce additional loop-carried depen-
dences, you must remove these as well.

Removing Anti and Output Dependences

In an anti dependence, there is a race between statement S1 reading the
location and S2 writing it. We can break the race condition by giving each
thread or iteration a separate copy of the location. We must also ensure

Example 3.16 A loop containing multiple data dependences.
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that S1 reads the correct value from the location. If each iteration initial-
izes the location before S1 reads it, we can remove the dependence just by
privatization. In Example 3.17, there is a non-loop-carried anti depen-
dence on the variable x that is removed using this technique. On the other
hand, the value read by S1 may be assigned before the loop, as is true of
the array element a(i+1) read in line 10 of Example 3.17. To remove this
dependence, we can make a copy of the array a before the loop (called a2)
and read the copy rather than the original array within the parallel loop.
Of course, creating a copy of the array adds memory and computation
overhead, so we must ensure that there is enough work in the loop to jus-
tify the additional overhead.

Serial version containing anti dependences:

      ! Array a is assigned before start of loop.
      do i = 1, N – 1
         x = (b(i) + c(i))/2
 10      a(i) = a(i + 1) + x
      enddo

Parallel version with dependences removed:

!$omp parallel do shared(a, a2)
      do i = 1, N – 1
         a2(i) = a(i + 1)
      enddo

!$omp parallel do shared(a, a2) private(x)
      do i = 1, N – 1
         x = (b(i) + c(i))/2
 10      a(i) = a2(i) + x
      enddo

In Example 3.18, the last values assigned to x and d(1) within the
loop and the value assigned to d(2) before the loop are read by a state-
ment that follows the loop. We say that the values in these locations are
live-out from the loop. Whenever we parallelize a loop, we must ensure
that live-out locations have the same values after executing the loop as
they would have if the loop were executed serially. If a live-out variable is
scoped as shared on a parallel loop and there are no loop-carried output
dependences on it (i.e., each of its locations is assigned by at most one
iteration), then this condition is satisfied.

Example 3.17 Removal of anti dependences.



3.5 Removing Data Dependences 75

On the other hand, if a live-out variable is scoped as private (to
remove a dependence on the variable) or some of its locations are
assigned by more than one iteration, then we need to perform some sort of
finalization to ensure that it holds the right values when the loop is fin-
ished. To parallelize the loop in Example 3.18, we must finalize both x
(because it is scoped private to break an anti dependence on it) and d
(because there is a loop-carried output dependence on d(1)). We can per-
form finalization on x simply by scoping it with a lastprivate rather than
private clause. As we explained in Section 3.4.7, the lastprivate clause
both scopes a variable as private within a parallel loop and also copies the
value assigned to the variable in the last iteration of the loop back to the
shared copy. It requires slightly more work to handle a case like the output
dependence on d(1): we cannot scope d as lastprivate because if we did, it
would overwrite the live-out value in d(2). One solution, which we use in
this example, is to introduce a lastprivate temporary (called d1) to copy
back the final value for d(1).

Of course, if the assignment to a live-out location within a loop is per-
formed only conditionally (such as when it is part of an if statement), the
lastprivate clause will not perform proper finalization because the final
value of the location may be assigned in some iteration other than the last,
or the location may not be assigned at all by the loop. It is still possible to
perform finalization in such cases: for example, we can keep track of the
last value assigned to the location by each thread, then at the end of the
loop we can copy back the value assigned in the highest-numbered itera-
tion. However, this sort of finalization technique is likely to be much more
expensive than the lastprivate clause. This highlights the fact that, in gen-
eral, we can always preserve correctness when removing anti and output
dependences, but we may have to add significant overhead to remove
them.

Serial version containing output dependences:

      do i = 1, N
         x = (b(i) + c(i))/2
         a(i) = a(i) + x
         d(1) = 2 * x
      enddo
      y = x + d(1) + d(2)

Example 3.18 Removal of output dependences.
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Parallel version with dependences removed:

!$omp parallel do shared(a) lastprivate(x, d1)
      do i = 1, N
         x = (b(i) + c(i))/2
         a(i) = a(i) + x
         d1 = 2 * x
      enddo
      d(1) = d1

      y = x + d(1) + d(2)

Removing Flow Dependences

As we stated before, we cannot always remove a flow dependence and run
the two dependent statements in parallel because the computation per-
formed by the later statement, S2, depends on the value produced by the
earlier one, S1. However, there are some special cases in which we can
remove flow dependences, three of which we will now describe. We have
in fact already seen the first case: reduction computations. In a reduction,
such as that depicted in Example 3.19, the statement that updates the
reduction variable also reads the variable, which causes a loop-carried
flow dependence. But as we discussed in Section 3.4.6, we can remove
this flow dependence and parallelize the reduction computation by scop-
ing the variable with a reduction clause that specifies the operator with
which to update the variable.

Serial version containing a flow dependence:

      x = 0
      do i = 1, N
         x = x + a(i)
      enddo

Parallel version with dependence removed:

      x = 0
!$omp parallel do reduction(+: x)
      do i = 1, N
         x = x + a(i)
      enddo

If a loop updates a variable in the same fashion as a reduction, but
also uses the value of the variable in some expression other than the one

Example 3.19 Removing the flow dependence caused by a reduction.
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that computes the updated value (idx, i_sum, and pow2 are updated and
used in this way in Example 3.20), we cannot remove the flow depen-
dence simply by scoping the variable with a reduction clause. This is
because the values of a reduction variable during each iteration of a paral-
lel execution differ from those of a serial execution. However, there is a
special class of reduction computations, called inductions, in which the
value of the reduction variable during each iteration is a simple function
of the loop index variable. For example, if the variable is updated using
multiplication by a constant, increment by a constant, or increment by the
loop index variable, then we can replace uses of the variable within the
loop by a simple expression containing the loop index. This technique is
called induction variable elimination, and we use it in Example 3.20 to
remove loop-carried flow dependences on idx, i_sum, and pow2. The
expression for i_sum relies on the fact that 

This kind of dependence often appears in loops that initialize arrays and
when an induction variable is introduced to simplify array subscripts (idx
is used in this way in the example).

Serial version containing flow dependences:

      idx = N/2 + 1
      i_sum = 1
      pow2 = 2
      do i = 1, N/2
         a(i) = a(i) + a(idx)
         b(i) = i_sum
         c(i) = pow2
         idx = idx + 1
         i_sum = i_sum + i
         pow2 = pow2 * 2
      enddo

Parallel version with dependences removed:

!$omp parallel do shared(a, b, c)
      do i = 1, N/2
         a(i) = a(i) + a(i + N/2)
         b(i) = i * (i + 1)/2
         c(i) = 2 ** i
      enddo

i
i 1=

N

∑ N N 1+( )
2

-----------------------=

Example 3.20 Removing flow dependences using induction variable elimination.
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The third technique we will describe for removing flow dependences
is called loop skewing. The basic idea of this technique is to convert a
loop-carried flow dependence into a non-loop-carried one. Example 3.21
shows a loop that can be parallelized by skewing it. The serial version of
the loop has a loop-carried flow dependence from the assignment to a(i)
at line 20 in iteration i to the read of a(i – 1) at line 10 in iteration i + 1.
However, we can compute each element a(i) in parallel because its value
does not depend on any other elements of a. In addition, we can shift, or
“skew,” the subsequent read of a(i) from iteration i + 1 to iteration i, so
that the dependence becomes non-loop-carried. After adjusting subscripts
and loop bounds appropriately, the final parallelized version of the loop
appears at the bottom of Example 3.21.

Serial version containing flow dependence:

      do i = 2, N
 10      b(i) = b(i) + a(i – 1)
 20      a(i) = a(i) + c(i)
      enddo

Parallel version with dependence removed:

      b(2) = b(2) + a(1)
!$omp parallel do shared(a, b, c)
      do i = 2, N – 1
 20      a(i) = a(i) + c(i)
 10      b(i + 1) = b(i + 1) + a(i)
      enddo
      a(N) = a(N) + c(N)

Dealing with Nonremovable Dependences

Although we have just seen several straightforward parallelization tech-
niques that can remove certain categories of loop-carried flow depen-
dences, in general this kind of dependence is difficult or impossible to
remove. For instance, the simple loop in Example 3.22 is a member of a
common category of computations called recurrences. It is impossible to
parallelize this loop using a single parallel do directive and simple transfor-
mation of the source code because computing each element a(i) requires
that we have the value of the previous element a(i – 1). However, by using
a completely different algorithm called a parallel scan, it is possible to com-
pute this and other kinds of recurrences in parallel (see Exercise 3).

Example 3.21 Removing flow dependences using loop skewing.
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do i = 2, N
    a(i) = (a(i – 1) + a(i))/2
enddo

Even when we cannot remove a particular flow dependence, we may
be able to parallelize some other part of the code that contains the depen-
dence. We will show three different techniques for doing this. When
applying any of these techniques, it is critical to make sure that we do not
violate any of the other dependences that are present and do not introduce
any new loop-carried dependences that we cannot remove.

The first technique is applicable only when the loop with the nonre-
movable dependence is part of a nest of at least two loops. The technique
is quite simple: try to parallelize some other loop in the nest. In
Example 3.23, the j loop contains a recurrence that is difficult to remove,
so we can parallelize the i loop instead. As we will see in Section 3.6.1 and
in Chapter 6, the choice of which loop in the nest runs in parallel can have
a profound impact on performance, so the parallel loop must be chosen
carefully.

Serial version:

      do j = 1, N
         do i = 1, N
            a(i, j) = a(i, j) + a(i, j – 1)
         enddo
      enddo

Parallel version:

      do j = 1, N
!$omp parallel do shared(a)
         do i = 1, N
            a(i, j) = a(i, j) + a(i, j – 1)
         enddo
      enddo

The second technique assumes that the loop that contains the nonre-
movable dependence also contains other code that can be parallelized. By
splitting, or fissioning, the loop into a serial and a parallel portion, we can

Example 3.22 A recurrence computation that is difficult to parallelize.

Example 3.23 Parallelization of a loop nest containing a recurrence.
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achieve a speedup on at least the parallelizable portion of the loop. (Of
course, when fissioning the loop we must not violate any dependences
between the serial and parallel portions.) In Example 3.24, the recurrence
computation using a in line 10 is hard to parallelize, so we fission it off
into a serial loop and parallelize the rest of the original loop.

Serial version:

      do i = 1, N
 10      a(i) = a(i) + a(i – 1)
 20      y = y + c(i)
      enddo

Parallel version:

      do i = 1, N
 10      a(i) = a(i) + a(i – 1)
      enddo

!$omp parallel do reduction(+: y)
      do i = 1, N
 20      y = y + c(i)
      enddo

The third technique also involves splitting the loop into serial and par-
allel portions. However, unlike fissioning this technique can also move
non-loop-carried flow dependences from statements in the serial portion
to statements in the parallel portion. In Example 3.25, there are loop-
carried and non-loop-carried flow dependences on y. We cannot remove
the loop-carried dependence, but we can parallelize the computation in
line 20. The trick is that in iteration i of the parallel loop we must have
available the value that is assigned to y during iteration i of a serial execu-
tion of the loop. To make it available, we fission off the update of y in line
10. Then we perform a transformation, called scalar expansion, that stores
in a temporary array y2 the value assigned to y during each iteration of the
serial loop. Finally, we parallelize the loop that contains line 20 and
replace references to y with references to the appropriate element of y2. A
major disadvantage of this technique is that it introduces significant mem-
ory overhead due to the use of the temporary array, so you should use sca-
lar expansion only when the speedup is worth the overhead.

Example 3.24 Parallelization of part of a loop using fissioning.
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Serial version:

      do i = 1, N
 10      y = y + a(i)
 20      b(i) = (b(i) + c(i)) * y
      enddo

Parallel version:

      y2(1) = y + a(1)
      do i = 2, N
 10      y2(i) = y2(i – 1) + a(i)
      enddo
      y = y2(N)

!$omp parallel do shared(b, c, y2)
      do i = 1, N
 20      b(i) = (b(i) + c(i)) * y2(i)
      enddo

3.5.5 Summary

To prevent data races in a loop we are parallelizing, we must remove
each loop-carried dependence that is present. There is a loop-carried de-
pendence whenever two statements in different iterations access a mem-
ory location, and at least one of the statements writes the location. Based
upon the dataflow through the memory location between the two state-
ments, each dependence may be classified as an anti, output, or flow
dependence.

We can remove anti dependences by providing each iteration with an
initialized copy of the memory location, either through privatization or by
introducing a new array variable. Output dependences can be ignored
unless the location is live-out from the loop. The values of live-out vari-
ables can often be finalized using the lastprivate clause.

We cannot always remove loop-carried flow dependences. However,
we can parallelize a reduction, eliminate an induction variable, or skew
a loop to make a dependence become non-loop-carried. If we cannot
remove a flow dependence, we may instead be able to parallelize another
loop in the nest, fission the loop into serial and parallel portions, or
remove a dependence on a nonparallelizable portion of the loop by
expanding a scalar into an array.

Example 3.25 Parallelization of part of a loop using scalar expansion and fissioning.
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Whenever we modify a loop to remove a dependence, we should be
careful that the memory or computational cost of the transformation does
not exceed the benefit of parallelizing the loop. In addition, we must not
violate any of the other data dependences present in the loop, and we
must remove any new loop-carried dependences that we introduce.

The discussion in this section has emphasized data dependences that
appear within parallel loops. However, the general rules for detecting,
classifying, and removing dependences remain the same in the presence of
other forms of parallelism, such as coarse-grained parallelism expressed
using parallel regions.

3.6 Enhancing Performance

There is no guarantee that just because a loop has been correctly parallel-
ized, its performance will improve. In fact, in some circumstances parallel-
izing the wrong loop can slow the program down. Even when the choice
of loop is reasonable, some performance tuning may be necessary to make
the loop run acceptably fast.

Two key factors that affect performance are parallel overhead and
loop scheduling. OpenMP provides several features for controlling these
factors, by means of clauses on the parallel do directive. In this section
we will briefly introduce these two concepts, then describe OpenMP’s
performance-tuning features for controlling these aspects of a program’s
behavior. There are several other factors that can have a big impact on
performance, such as synchronization overhead and memory cache
utilization. These topics receive a full discussion in Chapters 5 and 6,
respectively.

3.6.1 Ensuring Sufficient Work

From the discussion of OpenMP’s execution model in Chapter 2, it
should be clear that running a loop in parallel adds runtime costs: the
master thread has to start the slaves, iterations have to be divided among
the threads, and threads must synchronize at the end of the loop. We call
these additional costs parallel overhead.

Each iteration of a loop involves a certain amount of work, in the form
of integer and floating-point operations, loads and stores of memory loca-
tions, and control flow instructions such as subroutine calls and branches.
In many loops, the amount of work per iteration may be small, perhaps
just a few instructions (saxpy is one such case, as it performs just a load, a
multiply, an add, and a store on each iteration). For these loops, the paral-
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lel overhead for the loop may be orders of magnitude larger than the aver-
age time to execute one iteration of the loop. Unfortunately, if we add a
parallel do directive to the loop, it is always run in parallel each time. Due
to the parallel overhead, the parallel version of the loop may run slower
than the serial version when the trip-count is small.

Suppose we find out by measuring execution times that the smallest
trip-count for which parallel saxpy is faster than the serial version is about
800. Then we could avoid slowdowns at low trip-counts by versioning the
loop, that is, by creating separate serial and parallel versions. This is
shown in the first part of Example 3.26.

Using explicit versioning:

      if (n .ge. 800) then
!$omp parallel do
         do i = 1, n
            z(i) = a * x(i) + y
         enddo
      else
         do i = 1, n
            z(i) = a * x(i) + y
         enddo
      end if

Using the if clause:

!$omp parallel do if (n .ge. 800)
      do i = 1, n
         z(i) = a * x(i) + y
      enddo

Creating separate copies by hand is tedious, so OpenMP provides a
feature called the if clause that versions loops more concisely. The if
clause appears on the parallel do directive and takes a Boolean expression
as an argument. Each time the loop is reached during execution, if the
expression evaluates to true, the loop is run in parallel. If the expression is
false, the loop is executed serially, without incurring parallel overhead.

Just as it may be unknown until runtime whether there is sufficient
work in a loop to make parallel execution worthwhile, it may be unknown
until runtime whether there are data dependences within the loop. The if
clause can be useful in these circumstances to cause a loop to execute

Example 3.26 Avoiding parallel overhead at low trip-counts.
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serially if a runtime test determines that there are dependences, and to
execute in parallel otherwise.

When we want to speed up a loop nest, it is generally best to parallel-
ize the loop that is as close as possible to being outermost. This is because
of parallel overhead: we pay this overhead each time we reach a parallel
loop, and the outermost loop in the nest is reached only once each time
control reaches the nest, whereas inner loops are reached once per itera-
tion of the loop that encloses them.

Because of data dependences, the outermost loop in a nest may not be
parallelizable. In the first part of Example 3.27, the outer loop is a recur-
rence, while the inner loop is parallelizable. However, if we put a parallel
do directive on the inner loop, we will incur the parallel overhead n – 1
times, that is, each time we reach the do=i loop nest. We can solve this
problem by applying a source transformation called loop interchange that
swaps the positions of inner and outer loops. (Of course, when we trans-
form the loop nest in this way, we must respect its data dependences, so
that it produces the same results as before.) The second part of the exam-
ple shows the same loop nest, after interchanging the loops and paralleliz-
ing the now-outermost i loop.

Original serial code:

      do j = 2, n          ! Not parallelizable.
         do i = 1, n       ! Parallelizable.
            a(i, j) = a(i, j) + a(i, j – 1)
         enddo
      enddo

Parallel code after loop interchange:

!$omp parallel do
      do i = 1, n
         do j = 2, n
            a(i, j) = a(i, j) + a(i, j – 1)
         enddo
      enddo 

In this example, we have reduced the total amount of parallel over-
head, but as we will see in Chapter 6, the transformed loop nest has worse
utilization of the memory cache. This implies that transformations that
improve one aspect of a program’s performance may hurt another aspect;
these trade-offs must be made carefully when tuning the performance of
an application.

Example 3.27 Reducing parallel overhead through loop interchange.
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3.6.2 Scheduling Loops to Balance the Load

As we have mentioned before, the manner in which iterations of a
parallel loop are assigned to threads is called the loop’s schedule. Using
the default schedule on most implementations, each thread executing a
parallel loop performs about as many iterations as any other thread. When
each iteration has approximately the same amount of work (such as in the
saxpy loop), this causes threads to carry about the same amount of load
(i.e, to perform about the same total amount of work) and to finish the
loop at about the same time. Generally, when the load is balanced fairly
equally among threads, a loop runs faster than when the load is unbal-
anced. So for a simple parallel loop such as saxpy, the default schedule is
close to optimal.

Unfortunately it is often the case that different iterations have different
amounts of work. Consider the code in Example 3.28. Each iteration of the
loop may invoke either one of the subroutines smallwork or bigwork.
Depending on the loop instance, therefore, the amount of work per itera-
tion may vary in a regular way with the iteration number (say, increasing
or decreasing linearly), or it may vary in an irregular or even random way.
If the load in such a loop is unbalanced, there will be synchronization
delays at some later point in the program, as faster threads wait for slower
ones to catch up. As a result the total execution time of the program will
increase.

!$omp parallel do private(xkind)
      do i = 1, n
         xkind = f(i)
         if (xkind .lt. 10) then
            call smallwork(x[i])
         else
            call bigwork(x[i])
         endif
      enddo

By changing the schedule of a load-unbalanced parallel loop, it is pos-
sible to reduce these synchronization delays and thereby speed up the
program. A schedule is specified by a schedule clause on the parallel do
directive. In this section we will describe each of the options available for
scheduling, concentrating on the mechanics of how each schedule assigns
iterations to threads and on the overhead it imposes. Chapter 6 discusses
the trade-offs between the different scheduling types and provides guide-
lines for selecting a schedule for the best performance.

Example 3.28 Parallel loop with an uneven load.
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3.6.3 Static and Dynamic Scheduling

One basic characteristic of a loop schedule is whether it is static or
dynamic:

• In a static schedule, the choice of which thread performs a particular
iteration is purely a function of the iteration number and number of
threads. Each thread performs only the iterations assigned to it at the
beginning of the loop.

• In a dynamic schedule, the assignment of iterations to threads can
vary at runtime from one execution to another. Not all iterations are
assigned to threads at the start of the loop. Instead, each thread
requests more iterations after it has completed the work already
assigned to it.

A dynamic schedule is more flexible: if some threads happen to finish
their iterations sooner, more iterations are assigned to them. However, the
OpenMP runtime system must coordinate these assignments to guarantee
that every iteration gets executed exactly once. Because of this coordina-
tion, requests for iterations incur some synchronization cost. Static sched-
uling has lower overhead because it does not incur this cost, but it cannot
compensate for load imbalances by shifting more iterations to less heavily
loaded threads.

In both schemes, iterations are assigned to threads in contiguous
ranges called chunks. The chunk size is the number of iterations a chunk
contains. For example, if we executed the saxpy loop on an array with 100
elements using four threads and the default schedule, thread 1 might be
assigned a single chunk of 25 iterations in which i varies from 26 to 50.
When using a dynamic schedule, each time a thread requests more itera-
tions from the OpenMP runtime system, it receives a new chunk to work
on. For example, if saxpy were executed using a dynamic schedule with a
fixed chunk size of 10, then thread 1 might be assigned three chunks with
iterations 11 to 20, 41 to 50, and 81 to 90.

3.6.4 Scheduling Options

Each OpenMP scheduling option assigns chunks to threads either stat-
ically or dynamically. The other characteristic that differentiates the sched-
ules is the way chunk sizes are determined. There is also an option for the
schedule to be determined by an environment variable.
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The syntactic form of a schedule clause is 

schedule(type[, chunk])

The type is one of static, dynamic, guided, or runtime. If it is present,
chunk must be a scalar integer value. The kind of schedule specified by
the clause depends on a combination of the type and whether chunk is
present, according to these rules, which are also summarized in Table 3.7:

• If type is static and chunk is not present, each thread is statically
assigned one chunk of iterations. The chunks will be equal or nearly
equal in size, but the precise assignment of iterations to threads
depends on the OpenMP implementation. In particular, if the number
of iterations is not evenly divisible by the number of threads, the run-
time system is free to divide the remaining iterations among threads as
it wishes. We will call this kind of schedule “simple static.”

• If type is static and chunk is present, iterations are divided into
chunks of size chunk until fewer than chunk remain. How the remain-
ing iterations are divided into chunks depends on the implementation.
Chunks are statically assigned to processors in a round-robin fashion:
the first thread gets the first chunk, the second thread gets the second
chunk, and so on, until no more chunks remain. We will call this kind
of schedule “interleaved.”

• If type is dynamic, iterations are divided into chunks of size chunk,
similarly to an interleaved schedule. If chunk is not present, the size of
all chunks is 1. At runtime, chunks are assigned to threads dynami-
cally. We will call this kind of schedule “simple dynamic.”

• If type is guided, the first chunk is of some implementation-dependent
size, and the size of each successive chunk decreases exponentially (it
is a certain percentage of the size of the preceding chunk) down to a
minimum size of chunk. (An example that shows what this looks like
appears below.) The value of the exponent depends on the implemen-
tation. If fewer than chunk iterations remain, how the rest are divided
into chunks also depends on the implementation. If chunk is not spec-
ified, the minimum chunk size is 1. Chunks are assigned to threads
dynamically. Guided scheduling is sometimes also called “guided self-
scheduling,” or “GSS.”

• If type is runtime, chunk must not appear. The schedule type is chosen
at runtime based on the value of the environment variable omp_
schedule. The environment variable should be set to a string that
matches the parameters that may appear in parentheses in a schedule
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clause. For example, if the program is run on a UNIX system, then per-
forming the C shell command

setenv OMP_SCHEDULE "dynamic,3"

before executing the program would result in the loops specified as
having a runtime schedule being actually executed with a dynamic
schedule with chunk size 3. If OMP_SCHEDULE was not set, the choice
of schedule depends on the implementation.

The syntax is the same for Fortran and C/C++. If a parallel loop has
no schedule clause, the choice of schedule is left up to the implementa-
tion; typically the default is simple static scheduling.

A word of caution: It is important that the correctness of a program
not depend on the schedule chosen for its parallel loops. A common way
for such a dependence to creep into a program is if one iteration writes a
value that is read by another iteration that occurs later in a sequential exe-
cution. If the loop is first parallelized using a schedule that happens to
assign both iterations to the same thread, the program may get correct
results at first, but then mysteriously stop working if the schedule is
changed while tuning performance. If the schedule is dynamic, the pro-
gram may fail only intermittently, making debugging even more difficult.

3.6.5 Comparison of Runtime Scheduling Behavior

To help make sense of these different scheduling options, Table 3.7
compares them in terms of several characteristics that affect performance.
In the table, N is the trip-count of the parallel loop, P is the number of
threads executing the loop, and C is the user-specified chunk size (if a
schedule accepts a chunk argument but none was specified, C is 1 by
default).

Determining the lower and upper bounds for each chunk of a loop’s
iteration space involves some amount of computation. While the precise
cost of a particular schedule depends on the implementation, we can gen-
erally expect some kinds of schedules to be more expensive than others.
For example, a guided schedule is typically the most expensive of all
because it uses the most complex function to compute the size of each
chunk. These relative computation costs appear in the “Compute Over-
head” column of Table 3.7.

As we have said, dynamic schedules are more flexible in the sense
that they assign more chunks to threads that finish their chunks earlier. As
a result, these schedules can potentially balance the load better. To be
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more precise, if a simple dynamic schedule has a chunk size of C, it is
guaranteed that at the end of the loop, the fastest thread never has to wait
for the slowest thread to complete more than C iterations. So the quality of
load balancing improves as C decreases. The potential for improved load
balancing by dynamic schedules comes at the cost of one synchronization
per chunk, and the number of chunks increases with decreasing C. This
means that choosing a chunk size is a trade-off between the quality of
load balancing and the synchronization and computation costs.

The main benefit of a guided schedule over a simple dynamic one is
that guided schedules require fewer chunks, which lowers synchroniza-
tion costs. A guided schedule typically picks an initial chunk size K0 of
about N/P, then picks successive chunk sizes using this formula:

For example, a parallel loop with a trip-count of 1000 executed by eight
threads is divided into 41 chunks using a guided schedule when the mini-
mum chunk size C is 1. A simple dynamic schedule would produce 1000
chunks. If C were increased to 25, the guided schedule would use 20
chunks, while a simple dynamic one would use 40. Because the chunk
size of a guided schedule decreases exponentially, the number of chunks
required increases only logarithmically with the number of iterations. So if
the trip-count of our loop example were increased to 10,000, a simple
dynamic schedule would produce 400 chunks when C is 25, but a guided
schedule would produce only 38. For 100,000 iterations, the guided sched-
ule would produce only 55.

In cases when it is not obvious which schedule is best for a parallel
loop, it may be worthwhile to experiment with different schedules and
measure the results. In other cases, the best schedule may depend on the

Name type chunk Chunk Size
Number
of Chunks

Static or
Dynamic

Compute
Overhead

Simple static simple no N/P P static lowest
Interleaved simple yes C N/C static low

Simple dynamic dynamic optional C N/C dynamic medium

Guided guided optional decreasing
from N/P

fewer
than N/C

dynamic high

Runtime runtime no varies varies varies varies

Table 3.7 Comparison of scheduling options.

Ki 1 1
P
---–⎝ ⎠

⎛ ⎞ Ki 1–×=
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input data set. The runtime scheduling option is useful in both of these sit-
uations because it allows the schedule type to be specified for each run of
the program simply by changing an environment variable rather than by
recompiling the program.

Which schedule is best for a parallel loop depends on many factors.
This section has only discussed in general terms such properties of sched-
ules as their load balancing capabilities and overheads. Chapter 6 contains
specific advice about how to choose schedules based on the work distri-
bution patterns of different kinds of loops, and also based upon perfor-
mance considerations such as data locality that are beyond the scope of
this chapter.

3.7 Concluding Remarks

In this chapter we have described how to exploit loop-level parallelism in
OpenMP using the parallel do directive. We described the basic techniques
used to identify loops that can safely be run in parallel and presented
some of the factors that affect the performance of the parallel loop. We
showed how each of these concerns may be addressed using the con-
structs in OpenMP.

Loop-level parallelism is one of the most common forms of parallelism
found in programs, and is also the easiest to express. The parallel do con-
struct is therefore among the most important of the OpenMP constructs.
Having mastered loop-level parallelism, in the next chapter we will move
on to exploiting more general forms of parallelism. 

3.8 Exercises

1. Explain why each of the following loops can or cannot be parallelized
with a parallel do (or parallel for) directive.

a)    do i = 1, N
          if (x(i) .gt. maxval) goto 100
     enddo
100  continue

b)    x(N/2:N) = a * y(N/2:N) + z(N/2:N)

c)    do i = 1, N
          do j = 1, size(i)
               a(j, i) = a(j, i) + a(j + 1, i)
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          enddo
     enddo

d)    for (i = 0; i < N; i++) {
          if (weight[i] > HEAVY) {
              pid = fork();
              if (pid == –1) {
                  perror("fork");
                  exit(1);
              }
              if (pid == 0) {
                  heavy_task();
                  exit(1);
              }
          }
          else
              light_task();
     }

e)    do i = 1, N
        a(i) = a(i) * a(i)
        if (fabs(a(i)) .gt. machine_max .or. &
            fabs(a(i)) .lt. machine_min) then
            print *, i
            stop
        endif
     enddo

2. Consider the following loop:

      x = 1
!$omp parallel do firstprivate(x)
      do i = 1, N
         y(i) = x + i
         x = i
      enddo

a) Why is this loop incorrect? (Hint: Does y(i) get the same result
regardless of the number of threads executing the loop?)

b) What is the value of i at the end of the loop? What is the value of x
at the end of the loop?

c) What would be the value of x at the end of the loop if it was scoped
shared?

d) Can this loop be parallelized correctly (i.e., preserving sequential
semantics) just with the use of directives?
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3. There are at least two known ways of parallelizing the loop in
Example 3.11, although not trivially with a simple parallel do direc-
tive. Implement one. (Hint: The simplest and most general method
uses parallel regions, introduced in Chapter 2 and the focus of the
next chapter. There is, however, a way of doing this using only parallel
do directives, although it requires additional storage, takes O(N log N)
operations, and it helps if N is a power of two. Both methods rely on
partial sums.)

4. Write a parallel loop that benefits from dynamic scheduling.

5. Consider the following loop:

!$omp parallel do schedule(static, chunk)
      do i = 1, N
         x(i) = a * x(i) + b
      enddo

Assuming the program is running on a cache-based multiprocessor
system, what happens to the performance when we choose a chunk
size of 1? 2? Experiment with chunk sizes that are powers of two,
ranging up to 128. Is there a discontinuous jump in performance? Be
sure to time only the loop and also make sure x(i) is initialized (so
that the timings are not polluted with the cost of first mapping in
x(i)). Explain the observed behavior.
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4.1 Introduction

THE PREVIOUS CHAPTER FOCUSED ON EXPLOITING loop-level parallelism using
OpenMP. This form of parallelism is relatively easy to exploit and provides
an incremental approach towards parallelizing an application, one loop at
a time. However, since loop-level parallelism is based on local analysis of
individual loops, it is limited in the forms of parallelism that it can exploit.
A global analysis of the algorithm, potentially including multiple loops as
well as other noniterative constructs, can often be used to parallelize
larger portions of an application such as an entire phase of an algorithm.
Parallelizing larger and larger portions of an application in turn yields
improved speedups and scalable performance.

This chapter focuses on the support provided in OpenMP for moving
beyond loop-level parallelism. This support takes two forms. First, OpenMP
provides a generalized parallel region construct to express parallel execu-
tion. Rather than being restricted to a loop (as with the parallel do con-
struct discussed in the previous chapter), this construct is attached to an

CHAPTER 4

Beyond Loop-Level
Parallel ism:

Parallel Regions
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arbitrary body of code that is executed concurrently by multiple threads.
This form of replicated execution, with the body of code executing in a rep-
licated fashion across multiple threads, is commonly referred to as “SPMD”-
style parallelism, for “single-program multiple-data.” 

Second, within such a parallel body of code, OpenMP provides several
constructs that divide the execution of code portions across multiple
threads. These constructs are referred to as work-sharing constructs and are
used to partition work across the multiple threads. For instance, one work-
sharing construct is used to distribute iterations of a loop across multiple
threads within a parallel region. Another work-sharing construct is used to
assign distinct code segments to different threads and is useful for exploit-
ing unstructured, noniterative forms of parallelism. Taken together, the par-
allel region construct and the work-sharing constructs enable us to exploit
more general SPMD-style parallelism within an application.

The rest of this chapter proceeds as follows. We first describe the form
and usage of the parallel region construct, along with the clauses on the
construct, in Section 4.2. We then describe the behavior of the parallel
region construct, along with the corresponding runtime execution model,
in Section 4.3. We then describe the data scoping issues that are specific to
the parallel directive in Section 4.4. Next, we describe the various ways to
express work-sharing within OpenMP in Section 4.5 and present the restric-
tions on work-sharing constructs in Section 4.6. We describe the notion of
orphaned work-sharing constructs in Section 4.7 and address nested paral-
lel constructs in Section 4.8. Finally, we describe the mechanisms to query
and control the runtime execution parameters (such as the number of par-
allel threads) in Section 4.9.

4.2 Form and Usage of the parallel Directive

The parallel construct in OpenMP is quite simple: it consists of a parallel/
end parallel directive pair that can be used to enclose an arbitrary block of
code. This directive pair specifies that the enclosed block of code, referred
to as a parallel region, be executed in parallel by multiple threads.

The general form of the parallel directive in Fortran is

!$omp parallel [clause [,] [clause ...]]
    block
!$omp end parallel

In C and C++, the format is
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#pragma omp parallel [clause [clause] ...]
    block

4.2.1 Clauses on the parallel Directive

The parallel directive may contain any of the following clauses:

PRIVATE (list) 
SHARED (list)
DEFAULT (PRIVATE | SHARED | NONE)
REDUCTION ({op|intrinsic}:list)
IF (logical expression)
COPYIN (list)

The private, shared, default, reduction, and if clauses were discussed ear-
lier in Chapter 3 and continue to provide exactly the same behavior for the
parallel construct as they did for the parallel do construct. We briefly
review these clauses here.

The private clause is typically used to identify variables that are used
as scratch storage in the code segment within the parallel region. It pro-
vides a list of variables and specifies that each thread have a private copy
of those variables for the duration of the parallel region. 

The shared clause provides the exact opposite behavior: it specifies
that the named variable be shared among all the threads, so that accesses
from any thread reference the same shared instance of that variable in glo-
bal memory. This clause is used in several situations. For instance, it is
used to identify variables that are accessed in a read-only fashion by mul-
tiple threads, that is, only read and not modified. It may be used to iden-
tify a variable that is updated by multiple threads, but with each thread
updating a distinct location within that variable (e.g., the saxpy example
from Chapter 2). It may also be used to identify variables that are modified
by multiple threads and used to communicate values between multiple
threads during the parallel region (e.g., a shared error flag variable that
may be used to denote a global error condition to all the threads). 

The default clause is used to switch the default data-sharing attributes
of variables: while variables are shared by default, this behavior may be
switched to either private by default through the default(private) clause,
or to unspecified through the default(none) clause. In the latter case, all
variables referenced within the parallel region must be explicitly named in
one of the above data-sharing clauses. 

Finally, the reduction clause supplies a reduction operator and a list of
variables, and is used to identify variables used in reduction operations
within the parallel region.
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The if clause dynamically controls whether a parallel region construct
executes in parallel or in serial, based on a runtime test. We will have a bit
more to say about this clause in Section 4.9.1.

Before we can discuss the copyin clause, we need to introduce the
notion of threadprivate variables. This is the subject of Section 4.4.

4.2.2 Restrictions on the parallel Directive

The parallel construct consists of a parallel/end parallel directive pair
that encloses a block of code. The section of code that is enclosed between
the parallel and end parallel directives must be a structured block of
code—that is, it must be a block of code consisting of one or more state-
ments that is entered at the top (at the start of the parallel region) and
exited at the bottom (at the end of the parallel region). Thus, this block of
code must have a single entry point and a single exit point, with no
branches into or out of any statement within the block. While branches
within the block of code are permitted, branches to or from the block from
without are not permitted.

Example 4.1 is not valid because of the presence of the return state-
ment within the parallel region. The return statement is a branch out of
the parallel region and therefore is not allowed. 

Although it is not permitted to branch into or out of a parallel region,
Fortran stop statements are allowed within the parallel region. Similarly,
code within a parallel region in C/C++ may call the exit subroutine. If any
thread encounters a stop statement, it will execute the stop statement and
signal all the threads to stop. The other threads are signalled asynchro-
nously, and no guarantees are made about the precise execution point
where the other threads will be interrupted and the program stopped.

      subroutine sub(max)
      integer n

!$omp parallel
      call mypart(n)
      if (n .gt. max) return
!$omp end parallel

      return
      end

Example 4.1 Code that violates restrictions on parallel regions.
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4.3 Meaning of the parallel Directive

The parallel directive encloses a block of code, a parallel region, and cre-
ates a team of threads to execute a copy of this block of code in parallel.
The threads in the team concurrently execute the code in the parallel
region in a replicated fashion. 

We illustrate this behavior with a simple example in Example 4.2. This
code fragment contains a parallel region consisting of the single print
statement shown. Upon execution, this code behaves as follows (see Fig-
ure 4.1). Recall that by default an OpenMP program executes sequentially
on a single thread (the master thread), just like an ordinary serial pro-
gram. When the program encounters a construct that specifies parallel
execution, it creates a parallel team of threads (the slave threads), with
each thread in the team executing a copy of the body of code enclosed
within the parallel/end parallel directive. After each thread has finished
executing its copy of the block of code, there is an implicit barrier while
the program waits for all threads to finish, after which the master thread
(the original sequential thread) continues execution past the end parallel
directive. 

      ...
!$omp parallel
      print *, 'Hello world'
!$omp end parallel
      ...

Example 4.2 A simple parallel region.

print *,... print *,... print *,... print *,...

Figure 4.1 Runtime execution model for a parallel region.
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Let us examine how the parallel region construct compares with the
parallel do construct from the previous chapter. While the parallel do con-
struct was associated with a loop, the parallel region construct can be
associated with an arbitrary block of code. While the parallel do construct
specified that multiple iterations of the do loop execute concurrently, the
parallel region construct specifies that the block of code within the parallel
region execute concurrently on multiple threads without any synchroniza-
tion. Finally, in the parallel do construct, each thread executes a distinct
iteration instance of the do loop; consequently, iterations of the do loop
are divided among the team of threads. In contrast, the parallel region
construct executes a replicated copy of the block of code in the parallel
region on each thread. 

We examine this final difference in more detail in Example 4.3. In this
example, rather than containing a single print statement, we have a paral-
lel region construct that contains a do loop of, say, 10 iterations. When this
example is executed, a team of threads is created to execute a copy of the
enclosed block of code. This enclosed block is a do loop with 10 iterations.
Therefore, each thread executes 10 iterations of the do loop, printing the
value of the loop index variable each time around. If we execute with a
parallel team of four threads, a total of 40 print messages will appear in
the output of the program (for simplicity we assume the print statements
execute in an interleaved fashion). If the team has five threads, there will
be 50 print messages, and so on.

!$omp parallel
      do i = 1, 10
         print *, 'Hello world', i
      enddo
!$omp end parallel

The parallel do construct, on the other hand, behaves quite differ-
ently. The construct in Example 4.4 executes a total of 10 iterations
divided across the parallel team of threads. Regardless of the size of the
parallel team (four threads, or more, or less), this program upon execution
would produce a total of 10 print messages, with each thread in the team
printing zero or more of the messages.

!$omp parallel do
      do i = 1, 10
         print *, 'Hello world', i
      enddo

Example 4.3 Replication of work with the parallel region directive.

Example 4.4 Partitioning of work with the parallel do directive.
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These examples illustrate the difference between replicated execution
(as exemplified by the parallel region construct) and work division across
threads (as exemplified by the parallel do construct). 

With replicated execution (and sometimes with the parallel do con-
struct also), it is often useful for the programmer to query and control the
number of threads in a parallel team. OpenMP provides several mecha-
nisms to control the size of parallel teams; these are described later in
Section 4.9.

Finally, an individual parallel construct invokes a team of threads to
execute the enclosed code concurrently. An OpenMP program may encoun-
ter multiple parallel constructs. In this case each parallel construct individ-
ually behaves as described earlier—it gathers a team of threads to execute
the enclosed construct concurrently, resuming serial execution once the
parallel construct has completed execution. This process is repeated upon
encountering another parallel construct, as shown in Figure 4.2.

Master thread

Slave threads

program main
serial-region

!$omp parallel
      first parallel-region
!$omp end parallel

serial-region

!$omp parallel
      second parallel-region
!$omp end parallel

serial region

end

Figure 4.2 Multiple parallel regions.
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4.3.1 Parallel Regions and SPMD-Style Parallelism

The parallel construct in OpenMP is a simple way of expressing paral-
lel execution and provides replicated execution of the same code segment
on multiple threads. It is most commonly used to exploit SPMD-style par-
allelism, where multiple threads execute the same code segments but on
different data items. Subsequent sections in this chapter will describe dif-
ferent ways of distributing data items across threads, along with the spe-
cific constructs provided in OpenMP to ease this programming task.

4.4 threadprivate Variables and the copyin Clause

A parallel region encloses an arbitrary block of code, perhaps including
calls to other subprograms such as another subroutine or function. We
define the lexical or static extent of a parallel region as the code that is
lexically within the parallel/end parallel directive. We define the dynamic
extent of a parallel region to include not only the code that is directly
between the parallel and end parallel directive (the static extent), but also
to include all the code in subprograms that are invoked either directly or
indirectly from within the parallel region. As a result the static extent is a
subset of the statements in the dynamic extent of the parallel region.

Figure 4.3 identifies both the lexical (i.e., static) and the dynamic
extent of the parallel region in this code example. The statements in the
dynamic extent also include the statements in the lexical extent, along
with the statements in the called subprogram whoami.

These definitions are important because the data scoping clauses
described in Section 4.2.1 apply only to the lexical scope of a parallel

Static extent

Dynamic extent

+

program main
!$omp parallel
      call whoami
!$omp end parallel
end

      subroutine whoami
      external omp_get_thread_num
      integer iam, omp_get_thread_num
      iam = omp_get_thread_num()
!$omp critical
      print *, "Hello from", iam
!$omp end critical
      return
      end

Figure 4.3 A parallel region with a call to a subroutine.
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region, and not to the entire dynamic extent of the region. For variables
that are global in scope (such as common block variables in Fortran, or
global variables in C/C++), references from within the lexical extent of a
parallel region are affected by the data scoping clause (such as private) on
the parallel directive. However, references to such global variables from
the dynamic extent that are outside of the lexical extent are not affected by
any of the data scoping clauses and always refer to the global shared
instance of the variable.

Although at first glance this behavior may seem troublesome, the
rationale behind it is not hard to understand. References within the lexical
extent are easily associated with the data scoping clause since they are
contained directly within the directive pair. However, this association is
much less intuitive for references that are outside the lexical scope. Identi-
fying the data scoping clause through a deeply nested call chain can be
quite cumbersome and error-prone. Furthermore, the dynamic extent of a
parallel region is not easily determined, especially in the presence of com-
plex control flow and indirect function calls through function pointers (in
C/C++). In general the dynamic extent of a parallel region is determined
only at program runtime. As a result, extending the data scoping clauses
to the full dynamic extent of a parallel region is extremely difficult and
cumbersome to implement. Based on these considerations, OpenMP chose
to avoid these complications by restricting data scoping clauses to the lex-
ical scope of a parallel region.

Let us now look at an example to illustrate this issue further. We first
present an incorrect piece of OpenMP code to illustrate the issue, and then
present the corrected version.

      program wrong
      common /bounds/ istart, iend
      integer iarray(10000)

      N=10000
!$omp parallel private(iam, nthreads, chunk)
!$omp+ private (istart, iend)

      ! Compute the subset of iterations 
      ! executed by each thread
      nthreads = omp_get_num_threads()
      iam = omp_get_thread_num()
      chunk = (N + nthreads – 1)/nthreads
      istart = iam * chunk + 1
      iend = min((iam + 1) * chunk, N)

      call work(iarray)
!$omp end parallel
      end 

Example 4.5 Data scoping clauses across lexical and dynamic extents.



102 Chapter 4—Beyond Loop-Level Parallelism: Parallel Regions

subroutine work(iarray)

      ! Subroutine to operate on a thread's 
      ! portion of the array "iarray"
      common /bounds/ istart, iend
      integer iarray(10000)

      do i = istart, iend
         iarray(i) = i * i
      enddo
      return
      end

In Example 4.5 we want to do some work on an array. We start a par-
allel region and make runtime library calls to fetch two values: nthreads,
the number of threads in the team, and iam, the thread ID within the team
of each thread. We calculate the portions of the array worked upon by
each thread based on the thread id as shown. istart is the starting array
index and iend is the ending array index for each thread. Each thread
needs its own values of iam, istart, and iend, and hence we make them
private for the parallel region. The subroutine work uses the values of
istart and iend to work on a different portion of the array on each thread.
We use a common block named bounds containing istart and iend, essen-
tially containing the values used in both the main program and the sub-
routine.

However, this example will not work as expected. We correctly made
istart and iend private, since we want each thread to have its own values
of the index range for that thread. However, the private clause applies only
to the references made from within the lexical scope of the parallel region.
References to istart and iend from within the work subroutine are not
affected by the private clause, and directly access the shared instances
from the common block. The values in the common block are undefined
and lead to incorrect runtime behavior.

Example 4.5 can be corrected by passing the values of istart and iend
as parameters to the work subroutine, as shown in Example 4.6.

      program correct
      common /bounds/ istart, iend
      integer iarray(10000)

      N = 10000
!$omp parallel private(iam, nthreads, chunk)
!$omp+ private(istart, iend)

      ! Compute the subset of iterations 
      ! executed by each thread

Example 4.6 Fixing data scoping through parameters.
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      nthreads = omp_get_num_threads()
      iam = omp_get_thread_num()
      chunk = (N + nthreads – 1)/nthreads
      istart = iam * chunk + 1
      iend = min((iam + 1) * chunk, N)

      call work(iarray, istart, iend)
!$omp end parallel
      end 

      subroutine work(iarray, istart, iend)

      ! Subroutine to operate on a thread's
      ! portion of the array "iarray"
      integer iarray(10000)

      do i = istart, iend
         iarray(i) = i * i
      enddo
      return
      end

By passing istart and iend as parameters, we have effectively replaced
all references to these otherwise “global” variables to instead refer to the
private copy of those variables within the parallel region. This program
now behaves in the desired fashion.

4.4.1 The threadprivate Directive

While the previous example was easily fixed by passing the variables
through the argument list instead of through the common block, it is often
cumbersome to do so in real applications where the common blocks appear
in several program modules. OpenMP provides an easier alternative that
does not require modification of argument lists, using the threadprivate
directive. 

The threadprivate directive is used to identify a common block (or a
global variable in C/C++) as being private to each thread. If a common
block is marked as threadprivate using this directive, then a private copy
of that entire common block is created for each thread. Furthermore, all
references to variables within that common block anywhere in the entire
program refer to the variable instance within the private copy of the com-
mon block in the executing thread. As a result, multiple references from
within a thread, regardless of subprogram boundaries, always refer to the
same private copy of that variable within that thread. Furthermore,
threads cannot refer to the private instance of the common block belong-
ing to another thread. As a result, this directive effectively behaves like a
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private clause except that it applies to the entire program, not just the lex-
ical scope of a parallel region. (For those familiar with Cray systems, this
directive is similar to the taskcommon specification on those machines.)

Let us look at how the threadprivate directive proves useful in our
previous example. Example 4.7 contains a threadprivate declaration for
the /bounds/common block. As a result, each thread gets its own private
copy of the entire common block, including the variables istart and iend.
We make one further change to our original example: we no longer spec-
ify istart and iend in the private clause for the parallel region, since they
are already private to each thread. In fact, supplying a private clause
would be in error, since that would create a new private instance of these
variables within the lexical scope of the parallel region, distinct from the
threadprivate copy, and we would have had the same problem as in the
first version of our example (Example 4.5). For this reason, the OpenMP
specification does not allow threadprivate common block variables to
appear in a private clause. With these changes, references to the variables
istart and iend always refer to the private copy within that thread. Fur-
thermore, references in both the main program as well as the work sub-
routine access the same threadprivate copy of the variable.

      program correct
      common /bounds/ istart, iend
!$omp threadprivate(/bounds/)
      integer iarray(10000)

      N = 10000
!$omp parallel private(iam, nthreads, chunk)

      ! Compute the subset of iterations 
      ! executed by each thread
      nthreads = omp_get_num_threads()
      iam = omp_get_thread_num()
      chunk = (N + nthreads – 1)/nthreads
      istart = iam * chunk + 1
      iend = min((iam + 1) * chunk, N)

      call work(iarray)
!$omp end parallel
      end 

      subroutine work(iarray)

      ! Subroutine to operate on a thread's
      ! portion of the array "iarray"
      common /bounds/ istart, iend

Example 4.7 Fixing data scoping using the threadprivate directive.
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!$omp threadprivate(/bounds/)
      integer iarray(10000)

      do i = istart, iend
         iarray(i) = i * i
      enddo
      return
      end

Specification of the threadprivate Directive

The syntax of the threadprivate directive in Fortran is 

!$omp threadprivate (/cb/[,/cb/]...)

where cb1, cb2, and so on are the names of common blocks to be made
threadprivate, contained within slashes as shown. Blank (i.e., unnamed)
common blocks cannot be made threadprivate. The corresponding syntax
in C and C++ is

#pragma omp threadprivate (list)

where list is a list of named file scope or namespace scope variables.
The threadprivate directive must be provided after the declaration of

the common block (or file scope or global variable in C/C++) within a
subprogram unit. Furthermore, if a common block is threadprivate, then
the threadprivate directive must be supplied after every declaration of the
common block. In other words, if a common block is threadprivate, then it
must be declared as such in all subprograms that use that common block:
it is not permissible to have a common block declared threadprivate in
some subroutines and not threadprivate in other subroutines.

Threadprivate common block variables must not appear in any other
data scope clauses. Even the default(private) clause does not affect any
threadprivate common block variables, which are always private to each
thread. As a result, it is safe to use the default(private) clause even when
threadprivate common block variables are being referenced in the parallel
region.

A threadprivate directive has the following effect on the program:
When the program begins execution there is only a single thread executing
serially, the master thread. The master thread has its own private copy of
the threadprivate common blocks.

When the program encounters a parallel region, a team of parallel
threads is created. This team consists of the original master thread and
some number of additional slave threads. Each slave thread has its own
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copy of the threadprivate common blocks, while the master thread contin-
ues to access its private copy as well. Both the initial copy of the master
thread, as well as the copies within each of the slave threads, are initial-
ized in the same way as the master thread’s copy of those variables would
be initialized in a serial instance of that program. For instance, in Fortran,
a threadprivate variable would be initialized only if the program contained
block data statements providing initial values for the common blocks. In C
and C++, threadprivate variables are initialized if the program provided
initial values with the definition of those variables, while objects in C++
would be constructed using the same constructor as for the master’s copy.
Initialization of each copy, if any, is done before the first reference to that
copy, typically when the private copy of the threadprivate data is first cre-
ated: at program startup time for the master thread, and when the threads
are first created for the slave threads.

When the end of a parallel region is reached, the slave threads disap-
pear, but they do not die. Rather, they park themselves on a queue waiting
for the next parallel region. In addition, although the slave threads are dor-
mant, they still retain their state, in particular their instances of the thread-
private common blocks. As a result, the contents of threadprivate data
persist for each thread from one parallel region to another. When the next
parallel region is reached and the slave threads are re-engaged, they can
access their threadprivate data and find the values computed at the end of
the previous parallel region. This persistence is guaranteed within OpenMP
so long as the number of threads does not change. If the user modifies the
requested number of parallel threads (say, through a call to a runtime
library routine), then a new set of slave threads will be created, each with a
freshly initialized set of threadprivate data.

Finally, during the serial portions of the program, only the master
thread executes, and it accesses its private copy of the threadprivate data.

4.4.2 The copyin Clause

Since each thread has its own private copy of threadprivate data for
the duration of the program, there is no way for a thread to access another
thread’s copy of such threadprivate data. However, OpenMP provides a
limited facility for slave threads to access the master thread’s copy of
threadprivate data, through the copyin clause.

The copyin clause may be supplied along with a parallel directive. It
can either provide a list of variables from within a threadprivate common
block, or it can name an entire threadprivate common block. When a
copyin clause is supplied with a parallel directive, the named threadprivate
variables (or the entire threadprivate common block if so specified) within
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the private copy of each slave thread are initialized with the corresponding
values in the master’s copy. This propagation of values from the master to
each slave thread is done at the start of the parallel region; subsequent to
this initialization, references to the threadprivate variables proceed as
before, referencing the private copy within each thread.

The copyin clause is helpful when the threadprivate variables are used
for scratch storage within each thread but still need initial values that may
either be computed by the master thread, or read from an input file into the
master’s copy. In such situations the copyin clause is an easy way to com-
municate these values from the master’s copy to that of the slave threads.

The syntax of the copyin clause is 

copyin (list)

where the list is a comma-separated list of names, with each name being
either a threadprivate common block name, an individual threadprivate
common block variable, or a file scope or global threadprivate variable in
C/C++. When listing the names of threadprivate common blocks, they
should appear between slashes.

We illustrate the copyin clause with a simple example. In Example 4.8
we have added another common block called cm with an array called data,
and a variable N that holds the size of this data array being used as scratch
storage. Although N would usually be a constant, in this example we are
assuming that different threads use a different-sized subset of the data
array. We therefore declare the cm common block as threadprivate. The
master thread computes the value of N before the parallel region. Upon
entering the parallel region, due to the copyin clause, each thread initializes
its private copy of N with the value of N from the master thread.

      common /bounds/ istart, iend
      common /cm/ N, data(1000)
!$omp threadprivate (/bounds/, /cm/)

      N = ...
!$omp parallel copyin(N)

      ! Each threadprivate copy of N is initialized
      ! with the value of N in the master thread.
      ! Subsequent modifications to N affect only 
      ! the private copy in each thread
      ... = N
!$omp end parallel
      end

Example 4.8 Using the copyin clause.
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4.5 Work-Sharing in Parallel Regions

The parallel construct in OpenMP is a simple way of expressing parallel
execution and provides replicated execution of the same code segment on
multiple threads. Along with replicated execution, it is often useful to
divide work among multiple threads—either by having different threads
operate on different portions of a shared data structure, or by having dif-
ferent threads perform entirely different tasks. We now describe several
ways of accomplishing this in OpenMP.

We present three different ways of accomplishing division of work
across threads. The first example illustrates how to build a general parallel
task queue that is serviced by multiple threads. The second example illus-
trates how, based on the id of each thread in a team, we can manually
divide the work among the threads in the team. Together, these two exam-
ples are instances where the programmer manually divides work among
a team of threads. Finally, we present some explicit OpenMP constructs
to divide work among threads. Such constructs are termed work-sharing
constructs.

4.5.1 A Parallel Task Queue

A parallel task queue is conceptually quite simple: it is a shared data
structure that contains a list of work items or tasks to be processed. Tasks
may range in size and complexity from one application to another. For
instance, a task may be something very simple, such as processing an iter-
ation (or a set of iterations) of a loop, and may be represented by just the
loop index value. On the other hand, a complex task could consist of ren-
dering a portion of a graphic image or scene on a display, and may be rep-
resented in a task list by a portion of an image and a rendering function.
Regardless of their representation and complexity, however, tasks in a task
queue typically share the following property: multiple tasks can be pro-
cessed concurrently by multiple threads, with any necessary coordination
expressed through explicit synchronization constructs. Furthermore, a
given task may be processed by any thread from the team.

Parallelism is easily exploited in such a task queue model. We create a
team of parallel threads, with each thread in the team repeatedly fetching
and executing tasks from this shared task queue. In Example 4.9 we have
a function that returns the index of the next task, and another subroutine
that processes a given task. In this example we chose a simple task queue
that consists of just an index to identify the task—the function get_
next_task returns the next index to be processed, while the subroutine
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process_task takes an index and performs the computation associated with
that index. Each thread repeatedly fetches and processes tasks, until all
the tasks have been processed, at which point the parallel region com-
pletes and the master thread resumes serial execution.

      ! Function to compute the next 
      ! task index to be processed
      integer function get_next_task()
      common /mycom/ index
      integer index

!$omp critical
      ! Check if we are out of tasks
      if (index .eq. MAX) then
            get_next_task = –1
      else
            index = index + 1
            get_next_task = index
      endif
!$omp end critical
      return
      end

      program TaskQueue
      integer myindex, get_next_task

!$omp parallel private (myindex)
      myindex = get_next_task()
      do while (myindex .ne. –1)
         call process_task (myindex)
         myindex = get_next_task()
      enddo
!$omp end parallel
      end

Example 4.9 was deliberately kept simple. However, it does contain
the basic ingredients of a task queue and can be generalized to more com-
plex algorithms as needed.

4.5.2 Dividing Work Based on Thread Number

A parallel region is executed by a team of threads, with the size of the
team being specified by the programmer or else determined by the imple-
mentation based on default rules. From within a parallel region, the num-
ber of threads in the current parallel team can be determined by calling
the OpenMP library routine

Example 4.9 Implementing a task queue.
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integer function omp_get_num_threads()

Threads in a parallel team are numbered from 0 to number_of_threads
– 1. This number constitutes a unique thread identifier and can be deter-
mined by invoking the library routine

integer function omp_get_thread_num()

The omp_get_thread_num function returns an integer value that is the iden-
tifier for the invoking thread. This function returns a different value when
invoked by different threads. The master thread has the thread ID 0, while
the slave threads have an ID ranging from 1 to number_of_threads – 1.

Since each thread can find out its thread number, we now have a way
to divide work among threads. For instance, we can use the number of
threads to divide up the work into as many pieces as there are threads.
Furthermore, each thread queries for its thread number within the team
and uses this thread number to determine its portion of the work. 

!$omp parallel private(iam)
      nthreads = omp_get_num_threads()
      iam = omp_get_thread_num()
      call work(iam, nthreads)
!$omp end parallel

Example 4.10 illustrates this basic concept. Each thread determines
nthreads (the total number of threads in the team) and iam (its ID in this
team of threads). Based on these two values, the subroutine work uses
iam and nthreads to determine the portion of work assigned to the thread
iam and executes that portion of the work. Each thread needs to have its
own unique thread id; therefore we declare iam to be private to each
thread. 

We have seen this kind of manual work-sharing before, when dividing
the iterations of a do loop among multiple threads.

      program distribute_iterations
      integer istart, iend, chunk, nthreads, iam
      integer iarray(N)

!$omp parallel private(iam, nthreads, chunk)
!$omp+ private (istart, iend)

Example 4.10 Using the thread number to divide work.

Example 4.11 Dividing loop iterations among threads.
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      ...
      ! Compute the subset of iterations
      ! executed by each thread
      nthreads = omp_get_num_threads()
      iam = omp_get_thread_num()
      chunk = (N + nthreads – 1)/nthreads
      istart = iam * chunk + 1
      iend = min((iam + 1) * chunk, N)
      do i = istart, iend
         iarray(i) = i * i
      enddo
!$omp end parallel
      end 

In Example 4.11 we manually divide the iterations of a do loop among
the threads in a team. Based on the total number of threads in the team,
nthreads, and its own ID within that team, iam, each thread computes
its portion of the iterations. This example performs a simple division of
work—we try to divide the total number of iterations, n, equally among
the threads, so that each thread gets “chunk” number of iterations. The
first thread processes the first chunk number of iterations, the second
thread the next chunk, and so on.

Again, this simple example illustrates a specific form of work-sharing,
dividing the iterations of a parallel loop. This simple scheme can be easily
extended to include more complex situations, such as dividing the itera-
tions in a more complex fashion across threads, or dividing the iterations
of multiple loops rather than just the single loop as in this example.

The next section introduces additional OpenMP constructs that sub-
stantially automate this task.

4.5.3 Work-Sharing Constructs in OpenMP

Example 4.11 presented the code to manually divide the iterations of a
do loop among multiple threads. Although conceptually simple, it requires
the programmer to code all the calculations for dividing iterations and
rewrite the do loop from the original program. Compared with the parallel
do construct from the previous chapter, this scheme is clearly primitive.
The user could simply use a parallel do directive, leaving all the details of
dividing and distributing iterations to the compiler/implementation; how-
ever, with a parallel region the user has to perform all these tasks manu-
ally. In an application with several parallel regions containing multiple do
loops, this coding can be quite cumbersome.
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This problem is addressed by the work-sharing directives in OpenMP.
Rather than manually distributing work across threads (as in the previous
examples), these directives allow the user to specify that portions of work
should be divided across threads rather than executed in a replicated fash-
ion. These directives relieve the programmer from coding the tedious
details of work-sharing, as well as reduce the number of changes required
in the original program.

There are three flavors of work-sharing directives provided within
OpenMP: the do directive for distributing iterations of a do loop, the sec-
tions directive for distributing execution of distinct pieces of code among
different threads, and the single directive to identify code that needs to be
executed by a single thread only. We discuss each of these constructs next.

The do Directive

The work-sharing directive corresponding to loops is called the do work-
sharing directive. Let us look at the previous example, written using the do
directive. Compare Example 4.12 to the original code in Example 4.11. We
start a parallel region as before, but rather than explicitly writing code to
divide the iterations of the loop and parceling them out to individual
threads, we simply insert the do directive before the do loop. The do direc-
tive does all the tasks that we had explicitly coded before, relieving the
programmer from all the tedious bookkeeping details.

      program omp_do
      integer iarray(N)

!$omp parallel
      ...
!$omp do
      do i = 1, N
         iarray(i) = i * i
      enddo
!$omp enddo
!$omp end parallel
      end 

The do directive is strictly a work-sharing directive. It does not specify
parallelism or create a team of parallel threads. Rather, within an existing
team of parallel threads, it divides the iterations of a do loop across the
parallel team. It is complementary to the parallel region construct. The par-

Example 4.12 Using the do work-sharing directive.
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allel region directive spawns parallelism with replicated execution across a
team of threads. In contrast, the do directive does not specify any parallel-
ism, and rather than replicated execution it instead partitions the iteration
space across multiple threads. This is further illustrated in Figure 4.4.

The precise syntax of the do construct in Fortran is

!$omp do [clause [,] [clause ...]]
      do i = ...
         ...
      enddo
!$omp enddo [nowait]

In C and C++ it is

#pragma omp for [clause [clause] ...]
    for-loop

where clause is one of the private, firstprivate, lastprivate, or reduction
scoping clauses, or one of the ordered or schedule clauses. Each of these
clauses has exactly the same behavior as for the parallel do directive dis-
cussed in the previous chapter.

By default, there is an implied barrier at the end of the do construct. If
this synchronization is not necessary for correct execution, then the bar-
rier may be avoided by the optional nowait clause on the enddo directive
in Fortran, or with the for pragma in C and C++.

As illustrated in Example 4.13, the parallel region construct can be
combined with the do directive to execute the iterations of a do loop in
parallel. These two directives may be combined into a single directive, the
familiar parallel do directive introduced in the previous chapter.

Replicated execution in parallel region Work-sharing in parallel region

!$omp do
do i = 1, n

...
endo

Figure 4.4 Work-sharing versus replicated execution.
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!$omp parallel do
      do i = 1, N
         a(i) = a(i) **2
      enddo
!$omp end parallel do

This is the directive that exploits just loop-level parallelism, intro-
duced in Chapter 3. It is essentially a shortened syntax for starting a paral-
lel region followed by the do work-sharing directive. It is simpler to use
when we need to run a loop in parallel. For more complex SPMD-style
codes that contain a combination of replicated execution as well as work-
sharing loops, we need to use the more powerful parallel region construct
combined with the work-sharing do directive.

The do directive (and the other work-sharing constructs discussed in
subsequent sections) enable us to easily exploit SPMD-style parallelism
using OpenMP. With these directives, work-sharing is easily expressed
through a simple directive, leaving the bookkeeping details to the underly-
ing implementation. Furthermore, the changes required to the original
source code are minimal.

Noniterative Work-Sharing: Parallel Sections

Thus far when discussing how to parallelize applications, we have been
concerned primarily with splitting up the work of one task at a time
among several threads. However, if the serial version of an application per-
forms a sequence of tasks in which none of the later tasks depends on the
results of the earlier ones, it may be more beneficial to assign different
tasks to different threads. This is especially true in cases where it is diffi-
cult or impossible to speed up the individual tasks by executing them in
parallel, either because the amount of work is too small or because the
task is inherently serial. To handle such cases, OpenMP provides the sec-
tions work-sharing construct, which allows us to perform the entire se-
quence of tasks in parallel, assigning each task to a different thread.

The code for the entire sequence of tasks, or sections, begins with a
sections directive and ends with an end sections directive. The beginning
of each section is marked by a section directive, which is optional for the
very first section. Another way to view it is that each section is separated
from the one that follows by a section directive. The precise syntax of the
section construct in Fortran is

!$omp section [clause [,] [clause ...]]
[!$omp section]

Example 4.13 Combining parallel region and work-sharing do.
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    code for the first section
[!$omp section
    code for the second section
    ...
]
!$omp end sections [nowait]

In C and C++ it is

#pragma omp sections [clause [clause] ...]
    {
     [#pragma omp section]
        block
     [#pragma omp section
        block
    ...
    ...
    ]
   }

Each clause must be a private, firstprivate, lastprivate, or reduction scoping
clause (C and C++ may also include the nowait clause on the pragma).
The meaning of private and firstprivate is the same as for a do work-shar-
ing construct. However, because a single thread may execute several sec-
tions, the value of a firstprivate variable can differ from that of the
corresponding shared variable at the start of a section. On the other hand,
if a variable x is made lastprivate within a sections construct, then the
thread executing the section that appears last in the source code writes the
value of its private x back to the corresponding shared copy of x after it
has finished that section. Finally, if a variable x appears in a reduction
clause, then after each thread finishes all sections assigned to it, it com-
bines its private copy of x into the corresponding shared copy of x using
the operator specified in the reduction clause.

The Fortran end sections directive must appear to mark the end,
because it marks the end of the sequence of sections. Like the do con-
struct, there is an implied barrier at the end of the sections construct,
which may be avoided by adding the nowait clause; this clause may be
added to the end sections directive in Fortran, while in C and C++ it is pro-
vided directly with the omp sections pragma.

This construct distributes the execution of the different sections among
the threads in the parallel team. Each section is executed once, and each
thread executes zero or more sections. A thread may execute more than
one section if, for example, there are more sections than threads, or if a
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thread finishes one section before other threads reach the sections con-
struct. It is generally not possible to determine whether one section will be
executed before another (regardless of which came first in the program’s
source), or whether two sections will be executed by the same thread. This
is because unlike the do construct, OpenMP provides no way to control
how the different sections are scheduled for execution by the available
threads. As a result, the output of one section generally should not serve as
the input to another: instead, the section that generates output should be
moved before the sections construct.

Similar to the combined parallel do construct, there is also a combined
form of the sections construct that begins with the parallel sections direc-
tive and ends with the end parallel sections directive. The combined form
accepts all the clauses that can appear on a parallel or sections construct.

Let us now examine an example using the sections directive. Consider
a simulation program that performs several independent preprocessing
steps after reading its input data but before performing the simulation.
These preprocessing steps are

1. Interpolation of input data from irregularly spaced sensors into a 
regular grid required for the simulation step

2. Gathering of various statistics about the input data

3. Generation of random parameters for Monte Carlo experiments 
performed as part of the simulation

In this example we focus on parallelizing the preprocessing steps.
Although the work within each is too small to benefit much from parallel-
ism within a step, we can exploit parallelism across the multiple steps.
Using the sections construct, we can execute all the steps concurrently as
distinct sections. This code is presented in Example 4.14.

      real sensor_data(3, nsensors), grid(N, N)
      real stats(nstats), params(nparams)
      ...

!$omp parallel sections
      call interpolate(sensor_data, nsensors, &
                       grid, N, N)
!$omp section
      call compute_stats(sensor_data, nsensors, &
                         stats, nstats)
!$omp section
      call gen_random_params(params, nparams)
!$omp end parallel sections

Example 4.14 Using the sections directive.
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Assigning Work to a Single Thread

The do and sections work-sharing constructs accelerate a computation by
splitting it into pieces and apportioning the pieces among a team’s
threads. Often a parallel region contains tasks that should not be
replicated or shared among threads, but instead must be performed just
once, by any one of the threads in the team. OpenMP provides the single
construct to identify these kinds of tasks that must be executed by just one
thread.

The general form of the single construct in Fortran is

!$omp single [clause [,] [clause ...]]
    block of statements to be executed by just one 
    thread
!$omp end single [nowait]

In C and C++ it is

#pragma omp single [clause [clause] ...]
    block

Each clause must be a private or firstprivate scoping clause (in C and C++
it may also be the nowait clause). The meaning of these clauses is the
same as for a parallel, do, or sections construct, although only one private
copy of each privatized variable needs to be created since only one thread
executes the enclosed code. Furthermore, in C/C++ the nowait clause, if
desired, is provided in the list of clauses supplied with the omp single
pragma itself.

In Fortran the end single directive must be supplied since it marks the
end of the single-threaded piece of code. Like all work-sharing constructs,
there is an implicit barrier at the end of a single unless the end single
directive includes the nowait clause (in C/C++ the nowait clause is sup-
plied directly with the single pragma). There is no implicit barrier at the
start of the single construct—if one is needed, it must be provided explic-
itly in the program. Finally, there is no combined form of the directive
because it makes little sense to define a parallel region that must be exe-
cuted by only one thread.

Example 4.15 illustrates the single directive. A common use of single
is when performing input or output within a parallel region that cannot be
successfully parallelized and must be executed sequentially. This is often
the case when the input/output operations must be performed in the same
strict order as in the serial program. In this situation, although any thread
can perform the desired I/O operation, it must be executed by just one
thread. In this example we first read some data, then all threads perform
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some computation on this data in parallel, after which the intermediate
results are printed out to a file. The I/O operations are enclosed by the sin-
gle directive, so that one of the threads that has finished the computation
performs the I/O operation. The other threads skip around the single con-
struct and move on to the code after the single directive.

      integer len
      real in(MAXLEN), out(MAXLEN), scratch(MAXLEN)

      ...
!$omp parallel shared (in, out, len)
      ...
!$omp single
      call read_array(in, len)
!$omp end single

!$omp do private(scratch)
      do j = 1, len
         call compute_result(out(j), in, len, scratch)
      enddo

!$omp single
      call write_array(out, len)
!$omp end single nowait
!$omp end parallel

At the beginning of the parallel region a single thread reads the shared
input array in. The particular thread that performs the single section is not
specified: an implementation may choose any heuristic, such as the first
thread to reach the construct or always select the master thread. Therefore
the correctness of the code must not depend on the choice of the particu-
lar thread. The remaining threads wait for the single construct to finish
and the data to be read in at the implicit barrier at the end single directive,
and then continue execution.

After the array has been read, all the threads compute the elements
of the output array out in parallel, using a work-sharing do. Finally, one
thread writes the output to a file. Now the threads do not need to wait for
output to complete, so we use the nowait clause to avoid synchronizing
after writing the output.

The single construct is different from other work-sharing constructs in
that it does not really divide work among threads, but rather assigns all
the work to a single thread. However, we still classify it as a work-sharing
construct for several reasons. Each piece of work within a single construct
is performed by exactly one thread, rather than performed by all threads

Example 4.15 Using the single directive.
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as is the case with replicated execution. In addition, the single construct
shares the other characteristics of work-sharing constructs as well: it must
be reached by all the threads in a team and each thread must reach all
work-sharing constructs (including single) in the same order. Finally, the
single construct also shares the implicit barrier and the nowait clause with
the other work-sharing constructs.

4.6 Restrictions on Work-Sharing Constructs

There are a few restrictions on the form and use of work-sharing con-
structs that we have glossed over up to this point. These restrictions
involve the syntax of work-sharing constructs, how threads may enter and
exit them, and how they may nest within each other.

4.6.1 Block Structure

In the syntax of Fortran executable statements, there is a notion of a
block, which consists of zero or more complete consecutive statements,
each at the same level of nesting. Each of these statements is an assign-
ment, a call, or a control construct such as if or do that contains one or
more blocks at a nesting level one deeper. The directives that begin and
end an OpenMP work-sharing construct must be placed so that all the exe-
cutable statements between them form a valid Fortran block.

All the work-sharing examples presented so far follow this rule. For
instance, when writing a do construct without an enddo directive, it is still
easy to follow this rule because the do loop is a single statement and
therefore is also a block. 

Code that violates this restriction is shown in Example 4.16. The sin-
gle construct includes only part of the if statement, with the result that
statement 10 is from a shallower level of nesting than statement 20.
Assuming that b has shared scope, we can correct this problem by moving
the end single right after the end if.

!$omp single
 10   x = 1
      if (z .eq. 3) then
 20      a(1) = 4
!$omp end single
         b(1) = 6
      end if

Example 4.16 Code that violates the block structure requirement.
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An additional restriction on the block of code within a construct is
that it is not permissible to branch into the block from outside the con-
struct, and it is not permissible to branch out of the construct from within
the block of code. Therefore no thread may enter or leave the block of
statements that make up a work-sharing construct using a control flow
construct such as exit, goto, or return. Each thread must instead enter the
work-sharing construct “at the top” and leave “out the bottom.” However,
a goto within a construct that transfers control to another statement also
within the construct is permitted, since it does not leave the block of code.

4.6.2 Entry and Exit

Because work-sharing constructs divide work among all the threads in
a team, it is an OpenMP requirement that all threads participate in each
work-sharing construct that is executed (lazy threads are not allowed to
shirk their fair share of work). There are three implications of this rule.
First, if any thread reaches a work-sharing construct, then all the threads
in the team must also reach that construct. Second, whenever a parallel
region executes multiple work-sharing constructs, all the threads must
reach all the executed work-sharing constructs in the same order. Third,
although a region may contain a work-sharing construct, it does not have
to be executed, so long as it is skipped by all the threads.

We illustrate these restrictions through some examples. For instance,
the code in Example 4.17 is invalid, since thread 0 will not encounter the
do directive. All threads need to encounter work-sharing constructs.

      ...
!$omp parallel private(iam)
      iam = omp_get_thread_num()
      if (iam .ne. 0) then
!$omp do
         do i = 1, n
            ...
         enddo
!$omp enddo
      endif
!$omp end parallel

In Example 4.17, we had a case where one of the threads did not
encounter the work-sharing directive. It is not enough for all threads to en-
counter a work-sharing construct either. Threads must encounter the same

Example 4.17 Illustrating the restrictions on work-sharing directives.



4.6 Restrictions on Work-Sharing Constructs 121

work-sharing construct. In Example 4.18 all threads encounter a work-
sharing construct, but odd-numbered threads encounter a different
work-sharing construct than the even-numbered ones. As a result, the
code is invalid. It’s acceptable for all threads to skip a work-sharing con-
struct though.

      ...
!$omp parallel private(iam)
      iam = omp_get_thread_num()
      if (mod(iam, 2) .eq. 0) then
!$omp do
         do j = 1, n
            ...
         enddo
      else
!$omp do
         do j = 1, n
            ...
         enddo
      end if
!$omp end parallel

In Example 4.19 the return statement from the work-shared do loop
causes an invalid branch out of the block. 

      subroutine test(n, a)
      real a(n)
!$omp do
      do i = 1, n
         if(a(i) .lt. 0) return
         a(i) = sqrt(a(i))
      enddo 
!$omp enddo
      return
      end

Although it is not permitted to branch into or out of a block that is
associated with a work-sharing directive, it is possible to branch within
the block. In Example 4.20 the goto statement is legal since it does not
cause a branch out of the block associated with the do directive. It is not a
good idea to use goto statements as in our example. We use it here only to
illustrate the branching rules.

Example 4.18 All threads must encounter the same work-sharing contructs.

Example 4.19 Branching out from a work-sharing construct.
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      subroutine test(n, a)
      real a(n)

!$omp do
      do i = 1, n
         if (a(i) .lt. 0) goto 10
         a(i) = sqrt(a(i))
         goto 20
 10      a(i) = 0
 20      continue
      enddo
      return
      end

4.6.3 Nesting of Work-Sharing Constructs

OpenMP does not allow a work-sharing construct to be nested; that is,
if a thread, while in the midst of executing a work-sharing construct,
encounters another work-sharing construct, then the program behavior is
undefined. We illustrate this in Example 4.21. This example violates the
nesting requirement since the outermost do directive contains an inner do
directive. 

!$omp parallel
!$omp do
      do i = 1, M
         ! The following directive is illegal
!$omp do
         do j = 1, N
            ...
         enddo
      enddo
!$omp end parallel

The rationale behind this restriction is that a work-sharing construct
divides a piece of work among a team of parallel threads. However, once a
thread is executing within a work-sharing construct, it is the only thread
executing that code (e.g., it may be executing one section of a sections
construct); there is no team of threads executing that specific piece of code
anymore, so it is nonsensical to attempt to further divide a portion of work
using a work-sharing construct. Nesting of work-sharing constructs is
therefore illegal in OpenMP.

Example 4.20 Branching within a work-sharing directive.

Example 4.21 Program with illegal nesting of work-sharing constructs.
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It is possible to parallelize a loop nest such as this such that iterations
of both the i and j loops are executed in parallel. The trick is to add a
third, outermost parallel loop that iterates over all the threads (a static
schedule will ensure that each thread executes precisely one iteration of
this loop). Within the body of the outermost loop, we manually divide the
iterations of the i and j loops such that each thread executes a different
subset of the i and j iterations.

Although it is a synchronization rather than work-sharing construct, a
barrier also requires the participation of all the threads in a team. It is
therefore subject to the following rules: either all threads or no thread
must reach the barrier; all threads must arrive at multiple barrier con-
structs in the same order; and a barrier cannot be nested within a work-
sharing construct. Based on these rules, a do directive cannot contain a
barrier directive.

4.7 Orphaning of Work-Sharing Constructs

All the examples that we have presented so far contain the work-sharing
constructs lexically enclosed within the parallel region construct. How-
ever, it is easy to imagine situations where this might be rather restrictive,
and we may wish to exploit work-sharing within a subroutine called from
inside a parallel region.

      subroutine work
      integer a(N)

!$omp parallel
      call initialize(a, N)
      ...
!$omp end parallel
      ...
      end

      subroutine initialize (a, N)
      integer i, N, a(N)

      ! Iterations of the following do loop may be 
      ! executed in parallel
      do i = 1, N
         a(i) = 0
      enddo
      end

Example 4.22 Work-sharing outside the lexical scope.
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In Example 4.22 the work subroutine contains a parallel region to do
some computation in parallel: it first initializes the elements of array a and
then performs the real computation. In this instance the initialization hap-
pens to be performed within a separate subroutine, initialize. Although
the do loop that initializes the array is trivially parallelizable, it is con-
tained outside the lexical scope of the parallel region. Furthermore, it is
possible that initialize may be called from within the parallel region (as in
subroutine work) as well as from serial code in other portions of the
program.

OpenMP does not restrict work-sharing directives to be within the lex-
ical scope of the parallel region; they can occur within a subroutine that is
invoked, either directly or indirectly, from inside a parallel region. Such
work-sharing constructs are referred to as orphaned, so named because
they are no longer enclosed within the lexical scope of the parallel region.

When an orphaned work-sharing construct is encountered from
within a parallel region, its behavior is identical (almost) to that of a simi-
lar work-sharing construct directly enclosed within the parallel region.
The differences in behavior are small and relate to the scoping of vari-
ables, and are discussed later in this section. However, the basic behavior
in terms of dividing up the enclosed work among the parallel team of
threads is the same as that of directives lexically within the parallel region.

We illustrate this by rewriting Example 4.22 to use an orphaned work-
sharing construct, as shown in Example 4.23. The only change is the do
directive attached to the loop in the initialize subroutine. With this change
the parallel construct creates a team of parallel threads. Each thread
invokes the initialize subroutine, encounters the do directive, and com-
putes a portion of the iterations from the do i loop. At the end of the do
directive, the threads gather at the implicit barrier, and then return to rep-
licated execution with the work subroutine. The do directive therefore suc-
cessfully divides the do loop iterations across the threads.

      subroutine work
      integer a(N)

!$omp parallel
      call initialize(a, N)
      ...
!$omp end parallel
      end

      subroutine initialize (a, N)
      integer i, N, a(N)

Example 4.23 Work-sharing outside the lexical scope.
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      ! Iterations of this do loop are 
      ! now executed in parallel
!$omp do
      do i = 1, N
         a(i) = 0
      enddo
      end

Let us now consider the scenario where the initialize subroutine is
invoked from a serial portion of the program, leaving the do directive
exposed without an enclosing parallel region. In this situation OpenMP
specifies that the single serial thread behave like a parallel team of threads
that consists of only one thread. As a result of this rule, the work-sharing
construct assigns all its portions of work to this single thread. In this
instance all the iterations of the do loop are assigned to the single serial
thread, which executes the do loop in its entirety before continuing. The
behavior of the code is almost as if the directive did not exist—the differ-
ences in behavior are small and relate to the data scoping of variables,
described in the next section. As a result of this rule, a subroutine contain-
ing orphaned work-sharing directives can safely be invoked from serial
code, with the directive being essentially ignored.

To summarize, an orphaned work-sharing construct encountered from
within a parallel region behaves almost as if it had appeared within the
lexical extent of the parallel construct. An orphaned work-sharing con-
struct encountered from within the serial portion of the program behaves
almost as if the work-sharing directive had not been there at all.

4.7.1 Data Scoping of Orphaned Constructs

Orphaned and nonorphaned work-sharing constructs differ in the way
variables are scoped within them. Let us examine their behavior for each
variable class. Variables in a common block (global variables in C/C++)
are shared by default in an orphaned work-sharing construct, regardless of
the scoping clauses in the enclosing parallel region. Automatic variables in
the subroutine containing the orphaned work-sharing construct are always
private, since each thread executes within its own stack. Automatic vari-
ables in the routine containing the parallel region follow the usual scoping
rules for a parallel region—that is, shared by default unless specified oth-
erwise in a data scoping clause. Formal parameters to the subroutine con-
taining the orphaned construct have their sharing behavior determined by
that of the corresponding actual variables in the calling routine’s context.

Data scoping for orphaned and non-orphaned constructs is similar in
other regards. For instance, the do loop index variable is private by default
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for either case. Furthermore, both kinds of work-sharing constructs disal-
low the shared clause. As a result, a variable that is private in the enclos-
ing context (based on any of the other scoping rules) can no longer be
made shared across threads for the work-sharing construct. Finally, both
kinds of constructs support the private clause, so that any variables that
are shared in the surrounding context can be made private for the scope of
the work-sharing construct.

4.7.2 Writing Code with Orphaned Work-Sharing Constructs

Before we leave orphaned work-sharing constructs, it bears repeating
that care must be exercised in using orphaned constructs. OpenMP tries to
provide reasonable behavior for orphaned OpenMP constructs regardless
of whether the code is invoked from within a serial or parallel region.
However, if a subroutine contains an orphaned work-sharing construct,
then this property cannot be considered encapsulated within that subrou-
tine. Rather, it must be treated as part of the interface to that subroutine
and exposed to the callers of the subroutine. 

While subroutines containing orphaned work-sharing constructs be-
have as expected when invoked from a serial code, they can cause nasty
surprises if they are accidentally invoked from within a parallel region.
Rather than executing the code within the work-sharing construct in a rep-
licated fashion, this code ends up being divided among multiple threads.
Callers of routines with orphaned constructs must therefore be aware of
the orphaned constructs in those routines.

4.8 Nested Parallel Regions

We have discussed at length the behavior of work-sharing constructs con-
tained within a parallel region. However, by now you probably want to
know what happens in an OpenMP program with nested parallelism,
where a parallel region is contained within another parallel region.

Parallel regions and nesting are fully orthogonal concepts in OpenMP.
The OpenMP programming model allows a program to contain parallel
regions nested within other parallel regions (keep in mind that the parallel
do and the parallel sections constructs are shorthand notations for a paral-
lel region containing either the do or the sections construct). The basic
semantics of a parallel region is that it creates a team of threads to execute
the block of code contained within the parallel region construct, returning
to serial execution at the end of the parallel construct. This behavior is fol-
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lowed regardless of whether the parallel region is encountered from within
serial code or from within an outer level of parallelism.

Example 4.24 illustrates nested parallelism. This example consists of a
subroutine taskqueue that contains a parallel region implementing task-
queue-based parallelism, similar to that in Example 4.9. However, in this
example we provide the routine to process a task (called process_task).
The task index passed to this subroutine is a column number in a two-
dimensional shared matrix called grid. Processing a task for the interior
(i.e., nonboundary) columns involves doing some computation on each
element of the given column of this matrix, as shown by the do loop
within the process_task subroutine, while the boundary columns need no
processing. The do loop to process the interior columns is a parallel loop
with multiple iterations updating distinct rows of the myindex column of
the matrix. We can therefore express this additional level of parallelism by
providing the parallel do directive on the do loop within the process_task
subroutine.

      subroutine TaskQueue
      integer myindex, get_next_task

!$omp parallel private (myindex)
      myindex = get_next_task()
      do while (myindex .ne. –1)
         call process_task (myindex)
         myindex = get_next_task()
      enddo
!$omp end parallel
      end

      subroutine process_task (myindex)
      integer myindex
      common /MYCOM/ grid(N, M)

      if (myindex .gt. 1 .AND myindex .lt. M) then
!$omp parallel do
         do i = 1, N
            grid(i, myindex) = ...
         enddo
      endif
      return
      end

When this program is executed, it will create a team of threads in the
taskqueue subroutine, with each thread repeatedly fetching and processing

Example 4.24 A program with nested parallelism.
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tasks. During the course of processing a task, a thread may encounter the
parallel do construct (if it is processing an interior column). At this point
this thread will create an additional, brand-new team of threads, of which
it will be the master, to execute the iterations of the do loop. The execution
of this do loop will proceed in parallel with this newly created team, just
like any other parallel region. After the parallel do loop is over, this new
team will gather at the implicit barrier, and the original thread will return
to executing its portion of the code. The slave threads of the now defunct
team will become dormant. The nested parallel region therefore simply
provides an additional level of parallelism and semantically behaves just
like a nonnested parallel region.

It is sometimes tempting to confuse work-sharing constructs with the
parallel region construct, so the distinctions between them bear repeating.
A parallel construct (including each of the parallel, parallel do, and paral-
lel sections directives) is a complete, encapsulated construct that attempts
to speed up a portion of code through parallel execution. Because it is a
self-contained construct, there are no restrictions on where and how often
a parallel construct may be encountered. 

Work-sharing constructs, on the other hand, are not self-contained but
instead depend on the surrounding context. They work in tandem with an
enclosing parallel region (invocation from serial code is like being invoked
from a parallel region but with a single thread). We refer to this as a bind-
ing of a work-sharing construct to an enclosing parallel region. This bind-
ing may be either lexical or dynamic, as is the case with orphaned work-
sharing constructs. Furthermore, in the presence of nested parallel con-
structs, this binding of a work-sharing construct is to the closest enclosing
parallel region.

To summarize, the behavior of a work-sharing construct depends on
the surrounding context; therefore there are restrictions on the usage of
work-sharing constructs—for example, all (or none) of the threads must
encounter each work-sharing construct. A parallel construct, on the other
hand, is fully self-contained and can be used without any such restric-
tions. For instance, as we show in Example 4.24, only the threads that pro-
cess an interior column encounter the nested parallel do construct.

Let us now consider a parallel region that happens to execute serially,
say, due to an if clause on the parallel region construct. There is absolutely
no effect on the semantics of the parallel construct, and it executes exactly
as if in parallel, except on a team consisting of only a single thread rather
than multiple threads. We refer to such a region as a serialized parallel
region. There is no change in the behavior of enclosed work-sharing con-
structs—they continue to bind to the serialized parallel region as before.
With regard to synchronization constructs, the barrier construct also binds
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to the closest dynamically enclosing parallel region and has no effect if
invoked from within a serialized parallel region. Synchronization con-
structs such as critical and atomic (presented in Chapter 5), on the other
hand, synchronize relative to all other threads, not just those in the cur-
rent team. As a result, these directives continue to function even when
invoked from within a serialized parallel region. Overall, therefore, the
only perceptible difference due to a serialized parallel region is in the per-
formance of the construct.

Unfortunately there is little reported practical experience with nested
parallelism. There is only a limited understanding of the performance and
implementation issues with supporting multiple levels of parallelism, and
even less experience with the needs of applications programs and its
implication for programming models. For now, nested parallelism contin-
ues to be an area of active research. Because many of these issues are not
well understood, by default OpenMP implementations support nested par-
allel constructs but serialize the implementation of nested levels of paral-
lelism. As a result, the program behaves correctly but does not benefit
from additional degrees of parallelism.

You may change this default behavior by using either the runtime
library routine

call omp_set_nested (.TRUE.)

or the environment variable

setenv OMP_NESTED TRUE

to enable nested parallelism; you may use the value false instead of true to
disable nested parallelism. In addition, OpenMP also provides a routine to
query whether nested parallelism is enabled or disabled:

logical function omp_get_nested()

As of the date of this writing, however, all OpenMP implementations
only support one level of parallelism and serialize the implementation of
further nested levels. We expect this to change over time with additional
experience.

4.8.1 Directive Nesting and Binding

Having described work-sharing constructs as well as nested parallel
regions, we now summarize the OpenMP rules with regard to the nesting
and binding of directives.
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All the work-sharing constructs (each of the do, sections, and single
directives) bind to the closest enclosing parallel directive. In addition, the
synchronization constructs barrier and master (see Chapter 5) also bind to
the closest enclosing parallel directive. As a result, if the enclosing parallel
region is serialized, these directives behave as if executing in parallel with
a team of a single thread. If there is no enclosing parallel region currently
being executed, then each of these directives has no effect. Other synchro-
nization constructs such as critical and atomic (see Chapter 5) have a glo-
bal effect across all threads in all teams, and execute regardless of the
enclosing parallel region.

Work-sharing constructs are not allowed to contain other work-
sharing constructs. In addition, they are not allowed to contain the barrier
synchronization construct, either, since the latter makes sense only in a
parallel region. 

The synchronization constructs critical, master, and ordered (see
Chapter 5) are not allowed to contain any work-sharing constructs, since
the latter require that either all or none of the threads arrive at each
instance of the construct.

Finally, a parallel directive inside another parallel directive logically
establishes a new nested parallel team of threads, although current imple-
mentations of OpenMP are physically limited to a team size of a single
thread.

4.9 Controlling Parallelism in an OpenMP Program

We have thus far focused on specifying parallelism in an OpenMP parallel
program. In this section we describe the mechanisms provided in OpenMP
for controlling parallel execution during program runtime. We first de-
scribe how parallel execution may be controlled at the granularity of an
individual parallel construct. Next we describe the OpenMP mechanisms
to query and control the degree of parallelism exploited by the program.
Finally, we describe a dynamic thread’s mechanism that adjusts the de-
gree of parallelism based on the available resources, helping to extract the
maximum throughput from a system.

4.9.1 Dynamically Disabling the parallel Directives

As we discussed in Section 3.6.1, the choice of whether to execute a
piece of code in parallel or serially is often determined by runtime factors
such as the amount of work in the parallel region (based on the input data
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set size, for instance) or whether we chose to go parallel in some other
portion of code or not. Rather than requiring the user to create multiple
versions of the same code, with one containing parallel directives and the
other remaining unchanged, OpenMP instead allows the programmer to
supply an optional if clause containing a general logical expression with
the parallel directive. When the program encounters the parallel region at
runtime, it first evaluates the logical expression. If it yields the value true,
then the corresponding parallel region is executed in parallel; otherwise it
is executed serially on a team of one thread only.

In addition to the if clause, OpenMP provides a runtime library routine
to query whether the program is currently executing within a parallel
region or not:

logical function omp_in_parallel

This function returns the value true when called from within a parallel
region executing in parallel on a team of multiple threads. It returns the
value false when called from a serial portion of the code or from a serial-
ized parallel region (a parallel region that is executing serially on a team
of only one thread). This function is often useful for programmers and
library writers who may need to decide whether to use a parallel algo-
rithm or a sequential algorithm based on the parallelism in the surround-
ing context.

4.9.2 Controlling the Number of Threads

In addition to specifying parallelism, OpenMP programmers may wish
to control the size of parallel teams during the execution of their parallel
program. The degree of parallelism exploited by an OpenMP program need
not be determined until program runtime. Different executions of a pro-
gram may therefore be run with different numbers of threads. Moreover,
OpenMP allows the number of threads to change during the execution of a
parallel program as well. We now describe these OpenMP mechanisms to
query and control the number of threads used by the program.

OpenMP provides two flavors of control. The first is through an envi-
ronment variable that may be set to a numerical value:

setenv OMP_NUM_THREADS 12

If this variable is set when the program is started, then the program will
execute using teams of omp_num_threads parallel threads (12 in this case)
for the parallel constructs. 
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The environment variable allows us to control the number of threads
only at program start-up time, for the duration of the program. To adjust
the degree of parallelism at a finer granularity, OpenMP also provides a
runtime library routine to change the number of threads during program
runtime:

call omp_set_num_threads(16)

This call sets the desired number of parallel threads during program exe-
cution for subsequent parallel regions encountered by the program. This
adjustment is not possible while the program is in the middle of executing
a parallel region; therefore, this call may only be invoked from the serial
portions of the program. There may be multiple calls to this routine in the
program, each of which changes the desired number of threads to the
newly supplied value.

      call omp_set_num_threads(64)
!$omp parallel private (iam)
      iam = omp_get_thread_num()
      call workon(iam)
!$omp end parallel

In Example 4.25 we ask for 64 threads before the parallel region. This
parallel region will therefore execute with 64 threads (or rather, most likely
execute with 64 threads, depending on whether dynamic threads is
enabled or not—see Section 4.9.3). Furthermore, all subsequent parallel
regions will also continue to use teams of 64 threads unless this number is
changed yet again with another call to omp_set_num_threads.

If neither the environment variable nor the runtime library calls are
used, then the choice of number of threads is implementation dependent.
Systems may then just choose a fixed number of threads or use heuristics
such as the number of available processors on the machine.

In addition to controlling the number of threads, OpenMP provides
the query routine

integer function omp_get_num_threads()

This routine returns the number of threads being used in the currently
executing parallel team. Consequently, when called from a serial portion
or from a serialized parallel region, the routine returns 1.

Example 4.25 Dynamically adjusting the number of threads.
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Since the choice of number of threads is likely to be based on the size
of the underlying parallel machine, OpenMP also provides the call

integer function omp_get_num_procs()

This routine returns the number of processors in the underlying machine
available for execution to the parallel program. To use all the available pro-
cessors on the machine, for instance, the user can make the call 

omp_set_num_threads(omp_get_num_procs())

Even when using a larger number of threads than the number of avail-
able processors, or while running on a loaded machine with few available
processors, the program will continue to run with the requested number of
threads. However, the implementation may choose to map multiple
threads in a time-sliced fashion on a single processor, resulting in correct
execution but perhaps reduced performance.

4.9.3 Dynamic Threads

In a multiprogrammed environment, parallel machines are often used
as shared compute servers, with multiple parallel applications running on
the machine at the same time. In this scenario it is possible for all the paral-
lel applications running together to request more processors than are
actually available. This situation, termed oversubscription, leads to conten-
tion for computing resources, causing degradations in both the performance
of an individual application as well as in overall system throughput. In this
situation, if the number of threads requested by each application could be
chosen to match the number of available processors, then the operating sys-
tem could improve overall system utilization. Unfortunately, the number of
available processors is not easily determined by a user; furthermore, this
number may change during the course of execution of a program based on
other jobs on the system.

To address this issue, OpenMP allows the implementation to automat-
ically adjust the number of active threads to match the number of avail-
able processors for that application based on the system load. This feature
is called dynamic threads within OpenMP. On behalf of the application,
the OpenMP runtime implementation can monitor the overall load on the
system and determine the number of processors available for the applica-
tion. The number of parallel threads executing within the application may
then be adjusted (i.e., perhaps increased or decreased) to match the
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number of available processors. With this scheme we can avoid oversub-
scription of processing resources and thereby deliver good system
throughput. Furthermore, this adjustment in the number of active threads
is done automatically by the implementation and relieves the programmer
from having to worry about coordinating with other jobs on the system.

It is difficult to write a parallel program if parallel threads can choose
to join or leave a team in an unpredictable manner. Therefore OpenMP
requires that the number of threads be adjusted only during serial portions
of the code. Once a parallel construct is encountered and a parallel team
has been created, then the size of that parallel team is guaranteed to
remain unchanged for the duration of that parallel construct. This allows
all the OpenMP work-sharing constructs to work correctly. For manual
division of work across threads, the suggested programming style is to
query the number of threads upon entry to a parallel region and to use
that number for the duration of the parallel region (it is assured of remain-
ing unchanged). Of course, subsequent parallel regions may use a differ-
ent number of threads.

Finally, if a user wants to be assured of a known number of threads
for either a phase or even the entire duration of a parallel program, then
this feature may be disabled through either an environment variable or a
runtime library call. The environment variable

setenv OMP_DYNAMIC {TRUE, FALSE}

can be used to enable/disable this feature for the duration of the parallel
program. To adjust this feature at a finer granularity during the course of
the program (say, for a particular phase), the user can insert a call to the
runtime library of the form

call omp_set_dynamic ({.TRUE.}, {.FALSE.})

The user can also query the current state of dynamic threads with the call

logical omp_get_dynamic ()

The default—whether dynamic threads is enabled or disabled—is imple-
mentation dependent. 

We have given a brief overview here of the dynamic threads feature in
OpenMP and discuss this issue further in Chapter 6.



4.9 Controlling Parallelism in an OpenMP Program 135

4.9.4 Runtime Library Calls and Environment Variables

In this section we give an overview of the runtime library calls and
environment variables available in OpenMP to control the execution
parameters of a parallel application. Table 4.1 gives a list and a brief de-
scription of the library routines in C/C++ and Fortran. The behavior of the
routines is the same in all of the languages. Prototypes for the C and C++
OpenMP library calls are available in the include file omp.h. Missing from
the list here are the library routines that provide lock operations—these
are described in Chapter 5.

The behavior of most of these routines is straightforward. The omp_
set_num_threads routine is used to change the number of threads used for
parallel constructs during the execution of the program, perhaps from one
parallel construct to another. Since this function changes the number of
threads to be used, it must be called from within the serial portion of the
program; otherwise its behavior is undefined.

In the presence of dynamic threads, the number of threads used for a
parallel construct is determined only when the parallel construct begins
executing. The omp_get_num_threads call may therefore be used to deter-
mine how many threads are being used in the currently executing region;
this number will no longer change for the rest of the current parallel
construct.

The omp_get_max_threads call returns the maximum number of
threads that may be used for a parallel construct, independent of the
dynamic adjustment in the number of active threads.

The omp_get_thread_num routine returns the thread number within
the currently executing team. When invoked from either serial code or
from within a serialized parallel region, this routine returns 0, since there
is only a single executing master thread in the current team.

Finally, the omp_in_parallel call returns the value true when invoked
from within the dynamic extent of a parallel region actually executing in
parallel. Serialized parallel regions do not count as executing in parallel.
Furthermore, this routine is not affected by nested parallel regions that
may have been serialized; if there is an outermore parallel region, then the
routine will return true.

Table 4.2 lists the environment variables that may be used to control
the execution of an OpenMP program. The default values of most of these
variables are implementation dependent, except for OMP_NESTED, which
must be false by default. The OMP_SCHEDULE environment variable
applies only to the do/for constructs and to the parallel do/parallel for con-
structs that have the runtime schedule type. Similar to the schedule clause,
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Library Routine (C and C++) Library Routine (Fortran) Description

void omp_set_num_threads (int) call omp_set_num_threads (integer) Set the number of threads to use in a team.

int omp_get_num_threads (void) integer omp_get_num_threads () Return the number of threads in the currently executing 
parallel region. Return 1 if invoked from serial code or a 
serialized parallel region.

int omp_get_max_threads (void) integer omp_get_max_threads () Return the maximum value that calls to omp_get_ 
num_threads may return. This value changes with 
calls to omp_set_num_threads.

int omp_get_thread_num (void) integer omp_get_thread_num () Return the thread number within the team, a value 
within the inclusive interval 0 and 
omp_get_num_threads() – 1.  Master thread is 0.

int omp_get_num_procs (void) integer omp_get_num_procs () Return the number of processors available to the 
program.

void omp_set_dynamic (int) call omp_set_dynamic  (logical) Enable/disable dynamic adjustment of number of 
threads used for a parallel construct.

int omp_get_dynamic (void) logical omp_get_dynamic () Return .TRUE. if dynamic threads is enabled, and 
.FALSE. otherwise.

int omp_in_parallel (void) logical omp_in_parallel () Return .TRUE. if this function is invoked from within 
the dynamic extent of a parallel region, and .FALSE. 
otherwise.

void omp_set_nested (int) call omp_set_nested  (logical) Enable/disable nested parallelism. If disabled, then 
nested parallel regions are serialized.

int omp_get_nested (void) logical omp_get_nested () Return .TRUE. if nested parallelism is enabled, and 
.FALSE. otherwise.

Table 4.1 Summary of OpenMP runtime library calls in C/C++ and Fortran.
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the environment variable must specify the schedule type and may provide
an optional chunk size as shown. These environment variables are exam-
ined only when the program begins execution; subsequent modifications,
once the program has started executing, are ignored. Finally, the OpenMP
runtime parameters controlled by these environment variables may be
modified during the execution of the program by invoking the library rou-
tines described above.

4.10 Concluding Remarks

In conclusion, it is worthwhile to compare loop-level parallelism exempli-
fied by the parallel do directive with SPMD-style parallelism exemplified
by the parallel regions construct. 

As with any parallel construct, both of these directive sets require that
the programmer have a complete understanding of the code contained
within the dynamic extent of the parallel construct. The programmer must
examine all variable references within the parallel construct and ensure
that scope clauses and explicit synchronization constructs are supplied as
needed. However, the two styles of parallelism have some basic differ-
ences. Loop-level parallelism only requires that iterations of a loop be
independent, and executes different iterations concurrently across multi-
ple processors. SPMD-style parallelism, on the other hand, consists of a
combination of replicated execution complemented with work-sharing
constructs that divide work across threads. In fact, loop-level parallelism is
just a special case of the more general parallel region directive containing
only a single loop-level work-sharing construct.

Variable Example Value Description

OMP_SCHEDULE "dynamic, 4" Specify the schedule type 
for parallel loops with a 
runtime schedule.

OMP_NUM_THREADS 16 Specify the number of 
threads to use during 
execution.

OMP_DYNAMIC TRUE or FALSE Enable/disable dynamic 
adjustment of threads.

OMP_NESTED TRUE or FALSE Enable/disable nested 
parallelism.

Table 4.2 Summary of the OpenMP environment variables.
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Because of the simpler model of parallelism, loop-level parallelism is
easier to understand and use, and lends itself well to incremental parallel-
ization one loop at a time. SPMD-style parallelism, on the other hand, has
a more complex model of parallelism. Programmers must explicitly con-
cern themselves with the replicated execution of code and identify those
code segments where work must instead be divided across the parallel
team of threads. 

This additional effort can have significant benefits. Whereas loop-level
parallelism is limited to loop-level constructs, and that to only one loop at
a time, SPMD-style parallelism is more powerful and can be used to paral-
lelize the execution of more general regions of code. As a result it can be
used to parallelize coarser-grained, and therefore larger regions of code
(compared to loops). Identifying coarser regions of parallel code is essen-
tial in parallelizing greater portions of the overall program. Furthermore, it
can reduce the overhead of spawning threads and synchronization that is
necessary with each parallel construct. As a result, although SPMD-style
parallelism is more cumbersome to use, it has the potential to yield better
parallel speedups than loop-level parallelism.

4.11 Exercises

1. Parallelize the following recurrence using parallel regions:

do i = 2, N
    a(i) = a(i) + a(i – 1)
enddo

2. What happens in Example 4.7 if we include istart and iend in the pri-
vate clause? What storage is now associated with the names istart and
iend inside the parallel region? What about inside the subroutine
work?

3. Rework Example 4.7 using an orphaned do directive and eliminating
the bounds common block.

4. Do you have to do anything special to Example 4.7 if you put iarray in
a common block? If you make this common block threadprivate, what
changes do you have to make to the rest of the program to keep it cor-
rect? Does it still make sense for iarray to be declared of size 10,000?
If not, what size should it be, assuming the program always executes
with four threads. How must you change the program now to keep it
correct? Why is putting iarray in a threadprivate common block a silly
thing to do?
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5. Integer sorting is a class of sorting where the keys are integers. Often
the range of possible key values is smaller than the number of keys, in
which case the sorting can be very efficiently accomplished using an
array of “buckets” in which to count keys. Below is the bucket sort
code for sorting the array key into a new array, key2. Parallelize the
code using parallel regions.

integer bucket(NUMBUKS), key(NUMKEYS), 
key2(NUMKEYS)

do i = 1, NUMBUKS
    bucket(i) = 0
enddo
do i = 1, NUMKEYS
    bucket(key(i)) = bucket(key(i)) + 1
enddo
do i = 2, NUMBUKS
    bucket(i) = bucket(i) + bucket(i – 1)
enddo
do i = 1, NUMKEYS
    key2(bucket(key(i))) = key(i)
    bucket(key(i)) = bucket(key(i)) – 1
enddo
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5.1 Introduction

Shared memory architectures enable implicit communication between
threads through references to variables in the globally shared memory.
Just as in a regular uniprocessor program, multiple threads in an OpenMP
program can communicate through regular read/write operations on vari-
ables in the shared address space. The underlying shared memory archi-
tecture is responsible for transparently managing all such communication
and maintaining a coherent view of memory across all the processors.

Although communication in an OpenMP program is implicit, it is usu-
ally necessary to coordinate the access to shared variables by multiple
threads to ensure correct execution. This chapter describes the synchroni-
zation constructs of OpenMP in detail. It introduces the various kinds of
data conflicts that arise in a parallel program and describes how to write a
correct OpenMP program in the presence of such data conflicts.

We first motivate the need for synchronization in shared memory par-
allel programs in Section 5.2. We then present the OpenMP synchroniza-
tion constructs for mutual exclusion including critical sections, the atomic
directive, and the runtime library lock routines, all in Section 5.3. Next we
present the synchronization constructs for event synchronization such as
barriers and ordered sections in Section 5.4. Finally we describe some of

CHAPTER 5

Synchronization
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the issues that arise when building custom synchronization using shared
memory variables, and how those are addressed in OpenMP, in Section 5.5.

5.2 Data Conflicts and the Need for Synchronization

OpenMP provides a shared memory programming model, with communi-
cation between multiple threads trivially expressed through regular read/
write operations on variables. However, as Example 5.1 illustrates, these
accesses must be coordinated to ensure the integrity of the data in the
program.

      ! Finding the largest element in a list of numbers
      cur_max = MINUS_INFINITY
!$omp parallel do
      do i = 1, n
         if (a(i) .gt. cur_max) then
            cur_max = a(i)
         endif
      enddo

Example 5.1 finds the largest element in a list of numbers. The origi-
nal uniprocessor program is quite straightforward: it stores the current
maximum (initialized to minus_infinity) and consists of a simple loop that
examines all the elements in the list, updating the maximum if the current
element is larger than the largest number seen so far. 

In parallelizing this piece of code, we simply add a parallel do direc-
tive to run the loop in parallel, so that each thread examines a portion of
the list of numbers. However, as coded in the example, it is possible for
the program to yield incorrect results. Let’s look at a possible execution
trace of the code. For simplicity, assume two threads, P0 and P1. Further-
more, assume that cur_max is 10, and the elements being examined by P0
and P1 are 11 and 12, respectively. Example 5.2 is a possible interleaved
sequence of instructions executed by each thread.

Thread 0 Thread 1
read a(i)    (value = 12) read a(j)    (value = 11)
read cur_max (value = 10) read cur_max (value = 10)
if (a(i) > cur_max) (12 > 10)
cur_max = a(i) (i.e. 12)

if (a(j) > cur_max) (11 > 10)
cur_max = a(j) (i.e. 11)

Example 5.1 Illustrating a data race.

Example 5.2 Possible execution fragment from Example 5.1.
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As we can see in the execution sequence shown in Example 5.2,
although each thread correctly executes its portion of the code, the final
value of cur_max is incorrectly set to 11. The problem arises because a
thread is reading cur_max even as some other thread is modifying it. Con-
sequently a thread may (incorrectly) decide to update cur_max based
upon having read a stale value for that variable. Concurrent accesses to
the same variable are called data races and must be coordinated to ensure
correct results. Such coordination mechanisms are the subject of this
chapter.

Although all forms of concurrent accesses are termed data races, syn-
chronization is required only for those data races where at least one of the
accesses is a write (i.e., modifies the variable). If all the accesses just read
the variable, then they can proceed correctly without any synchronization.
This is illustrated in Example 5.3.

!$omp parallel do shared(a, b)
      do i = 1, n
         a(i) = a(i) + b
      enddo

In Example 5.3 the variable b is declared shared in the parallel loop
and read concurrently by multiple threads. However, since b is not modi-
fied, there is no conflict and therefore no need for synchronization
between threads. Furthermore, even though array a is being updated by all
the threads, there is no data conflict since each thread modifies a distinct
element of a.

5.2.1 Getting Rid of Data Races

When parallelizing a program, there may be variables that are ac-
cessed by all threads but are not used to communicate values between
them; rather they are used as scratch storage within a thread to compute
some values used subsequently within the context of that same thread.
Such variables can be safely declared to be private to each thread, thereby
avoiding any data race altogether.

!$omp parallel do shared(a) private(b)
      do i = 1, n
         b = func(i, a(i))
         a(i) = a(i) + b
      enddo

Example 5.3 A data race without conflicts: multiple reads.

Example 5.4 Getting rid of a data race with privatization.
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Example 5.4 is similar to Example 5.3, except that each thread com-
putes the value of the scalar b to be added to each element of the array a.
If b is declared shared, then there is a data race on b since it is both read
and modified by multiple threads. However, b is used to compute a new
value within each iteration, and these values are not used across itera-
tions. Therefore b is not used to communicate between threads and can
safely be marked private as shown, thereby getting rid of the data conflict
on b.

Although this example illustrates the privatization of a scalar variable,
this technique can also be applied to more complex data structures such
as arrays and structures. Furthermore, in this example we assumed that
the value of b was not used after the loop. If indeed it is used, then b
would need to be declared lastprivate rather than private, and we would
still successfully get rid of the data race.

      cur_max = MINUS_INFINITY
!$omp parallel do reduction(MAX:cur_max)
      do i = 1, n
         cur_max = max (a(i), cur_max)
      enddo

A variation on this theme is to use reductions. We return to our first
example (Example 5.1) to find the largest element in a list of numbers.
The parallel version of this code can be viewed as if we first find the larg-
est element within each thread (by only examining the elements within
each thread), and then find the largest element across all the threads (by
only examining the largest element within each thread computed in the
previous step). This is essentially a reduction on cur_max using the max
operator, as shown in Example 5.5. This avoids the data race for cur_max
since each thread now has a private copy of cur_max for computing the
local maxima (i.e., within its portion of the list). The subsequent phase,
finding the largest element from among each thread’s maxima, does
require synchronization, but is implemented automatically as part of the
reduction clause. Thus the reduction clause can often be used successfully
to overcome data races.

5.2.2 Examples of Acceptable Data Races

The previous examples showed how we could avoid data races alto-
gether in some situations. We now present two examples, each with a data
race, but a race that is acceptable and does not require synchronization.

Example 5.5 Getting rid of a data race using reductions.
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Example 5.6 tries to determine whether a given item occurs within a
list of numbers. An item is allowed to occur multiple times within the
list—that is, the list may contain duplicates. Furthermore, we are only
interested in a true/false answer, depending on whether the item is found
or not.

      foundit = .FALSE.
!$omp parallel do
      do i = 1, n
         if (a(i) .eq. item) then
            foundit = .TRUE.
         endif
      enddo

The code segment in this example consists of a do loop that scans the
list of numbers, searching for the given item. Within each iteration, if the
item is found, then a global flag, foundit, is set to the value true. We exe-
cute the loop in parallel using the parallel do directive. As a result, itera-
tions of the do loop run in parallel and the foundit variable may potentially
be modified in multiple iterations. However, the code contains no synchro-
nization and allows multiple threads to update foundit simultaneously.
Since all the updates to foundit write the same value into the variable, the
final value of foundit will be true even in the presence of multiple updates.
If, of course, the item is not found, then no iteration will update the foundit
variable and it will remain false, which is exactly the desired behavior.

Example 5.7 presents a five-point SOR (successive over relaxation)
kernel. This algorithm contains a two-dimensional matrix of elements,
where each element in the matrix is updated by taking its average along
with the four nearest elements in the grid. This update step is performed
for each element in the grid and is then repeated over a succession of time
steps until the values converge based on some physical constraints within
the algorithm.

!$omp parallel do
      do j = 2, n – 1
         do i = 2, n – 1
            a(i, j) = (a(i, j) + a(i, j – 1) + a(i, j + 1) &
                       + a(i – 1, j) + a(i + 1, j))/5
         enddo
      enddo

Example 5.6 An acceptable data race: multiple writers that write the same value.

Example 5.7 An acceptable data race: multiple writers, but a relaxed algorithm.
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The code shown in Example 5.7 consists of a nest of two do loops that
scan all the elements in the grid, computing the average of each element
as the code proceeds. With the parallel do directive as shown, we execute
the do j loop in parallel, thereby processing the columns of the grid
concurrently across multiple threads. However, this code contains a data
dependence from one iteration of the do j loop to another. While iteration j
computes a(i,j), iteration j + 1 is using this same value of a(i,j) in com-
puting the average for the value at a(i,j + 1). As a result, this memory
location may simultaneously be read in one iteration while it is being
modified in another iteration.

Given the loop-carried data dependence in this example, the parallel
code contains a data race and may behave differently from the original,
serial version of the code. However, this code can provide acceptable
behavior in spite of this data race. As a consequence of this data race, it is
possible that an iteration may occasionally use an older value of a(i,j – 1)
or a(i,j + 1) from a preceding or succeeding column, rather than the latest
value. However, the algorithm is tolerant of such errors and will still con-
verge to the desired solution within an acceptable number of time-step
iterations. This class of algorithms are called relaxed algorithms, where the
parallel version does not implement the strict constraints of the original
serial code, but instead carefully relaxes some of the constraints to exploit
parallelism. As a result, this code can also successfully run in parallel
without any synchronization and benefit from additional speedup.

A final word of caution about this example. We have assumed that at
any time a(i,j) either has an old value or a new value. This assumption is
in turn based on the implicit assumption that a(i,j) is of primitive type
such as a floating-point number. However, imagine a scenario where
instead the type of a(i,j) is no longer primitive but instead is complex or
structured. It is then possible that while a(i,j) is in the process of being
updated, it has neither an old nor a new value, but rather a value that is
somewhere in between. While one iteration updates the new value of
a(i,j) through multiple write operations, another thread in a different iter-
ation may be reading a(i,j) and obtaining a mix of old and new partial val-
ues, violating our assumption above. Tricks such as this, therefore, must
be used carefully with an understanding of the granularity of primitive
write operations in the underlying machine.

5.2.3 Synchronization Mechanisms in OpenMP

Having understood the basics of data races and some ways of avoiding
them, we now describe the synchronization mechanisms provided in
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OpenMP. Synchronization mechanisms can be broadly classified into two
categories: mutual exclusion and event synchronization. 

Mutual exclusion synchronization is typically used to acquire exclusive
access to shared data structures. When multiple threads need to access the
same data structure, then mutual exclusion synchronization can be used to
guarantee that (1) only one thread has access to the data structure for the
duration of the synchronization construct, and (2) accesses by multiple
threads are interleaved at the granularity of the synchronization construct.

Event synchronization is used to signal the completion of some event
from one thread to another. For instance, although mutual exclusion pro-
vides exclusive access to a shared object, it does not provide any control
over the order in which threads access the shared object. Any desired
ordering between threads is implemented using event synchronization
constructs.

5.3 Mutual Exclusion Synchronization

OpenMP provides three different constructs for mutual exclusion. Al-
though the basic functionality provided is similar, the constructs are de-
signed hierarchically and range from restrictive but easy to use at one
extreme, to powerful but requiring more skill on the part of the program-
mer at the other extreme. We present these constructs in order of increas-
ing power and complexity.

5.3.1 The Critical Section Directive

The general form of the critical section in Fortran is

!$omp critical [(name)]
    block
!$omp end critical [(name)]

In C and C++ it is

#pragma omp critical [(name)]
    block

In this section we describe the basic critical section construct. We discuss
critical sections with the optional name argument in the subsequent
section.

We illustrate critical sections using our earlier example to find the
largest element in a list of numbers. This example as originally written
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(Example 5.1) had a data conflict on the variable cur_max, with multiple
threads potentially reading and modifying the variable. This data conflict
can be addressed by adding synchronization to acquire exclusive access
while referencing the cur_max variable. This is shown in Example 5.8.

In Example 5.8 the critical section construct consists of a matching
begin/end directive pair that encloses a structured block of code. Upon
encountering the critical directive, a thread waits until no other thread is
executing within a critical section, at which point it is granted exclusive
access. At the end critical directive, the thread surrenders its exclusive
access, signals a waiting thread (if any), and resumes execution past the
end of the critical section. This code will now execute correctly, since only
one thread can examine/update cur_max at any one time.

      cur_max = MINUS_INFINITY
!$omp parallel do
      do i = 1, n
!$omp critical
         if (a(i) .gt. cur_max) then
            cur_max = a(i)
         endif
!$omp end critical 
      enddo

The critical section directive provides mutual exclusion relative to all
critical section directives in the program—that is, only one critical section
is allowed to execute at one time anywhere in the program. Conceptually
this is equivalent to a global lock in the program.

The begin/end pair of directives must enclose a structured block of
code, so that a thread is assured of encountering both the directives in
order. Furthermore, it is illegal to branch into or jump out of a critical sec-
tion, since either of those would clearly violate the desired semantics of
the critical section.

There is no guarantee of fairness in granting access to a critical sec-
tion. In this context, “fairness” refers to the assurance that when multiple
threads request the critical section, then they are granted access to the crit-
ical section in some equitable fashion, such as in the order in which
requests are made (first come, first served) or in a predetermined order
such as round-robin. OpenMP does not provide any such guarantee. How-
ever, OpenMP does guarantee forward progress, that is, at least one of the
waiting threads will get access to the critical section. Therefore, in the
presence of contention, while it is possible for a thread to be starved while

Example 5.8 Using a critical section.
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other threads get repeated access to a critical section, an eligible thread
will always be assured of acquiring access to the critical section.

Refining the Example

The code in Example 5.8 with the added synchronization will now execute
correctly, but it no longer exploits any parallelism. With the critical section
as shown, the execution of this parallel loop is effectively serialized since
there is no longer any overlap in the work performed in different iterations
of the loop. However, this need not be so. We now refine the code to also
exploit parallelism.

      cur_max = MINUS_INFINITY
!$omp parallel do
      do i = 1, n
         if (a(i) .gt. cur_max) then
!$omp critical
            if (a(i) .gt. cur_max) then
               cur_max = a(i)
            endif
!$omp end critical 
         endif
      enddo

The new code in Example 5.9 is based on three key observations. The
first is that the value of cur_max increases monotonically during the exe-
cution of the loop. Therefore, if an element of the list is less than the
present value of cur_max, it is going to be less than all subsequent values
of cur_max during the loop. The second observation is that in general
most iterations of the loop only examine cur_max, but do not actually
update it (of course, this is not always true—for instance, imagine a list
that is sorted in increasing order). Finally, we are assuming that each ele-
ment of the array is a scalar type that can be written atomically by the
underlying architecture (e.g., a 4-byte or 8-byte integer or floating-point
number). This ensures that when a thread examines cur_max, it reads
either an old value or a new value, but never a value that is partly old and
partly new, and therefore an invalid value for cur_max (such might be the
case with a number of type complex, for instance). Based on these obser-
vations, we have rewritten the code to first examine cur_max without any
synchronization. If the present value of cur_max is already greater than
a(i), then we need proceed no further. Otherwise a(i) may be the largest
element seen so far, and we enter the critical section. Once inside the crit-
ical section we examine cur_max again. This is necessary because we

Example 5.9 Using a critical section.
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previously examined cur_max outside the critical section so it could have
changed in the meantime. Examining it again within the critical section
guarantees the thread exclusive access to cur_max, and an update based
on the fresh comparison is assured of being correct. Furthermore, this new
code will (hopefully) enter the critical section only infrequently and bene-
fit from increased parallelism.

A preliminary test such as this before actually executing the synchro-
nization construct is often helpful in parallel programs to avoid unneces-
sary overhead and exploit additional parallelism.

Named Critical Sections

The critical section directive presented above provides global synchroniza-
tion—that is, only one critical section can execute at one time, anywhere
in the program. Although this is a simple model, it can be overly restric-
tive when we need to protect access to distinct data structures. For
instance, if a thread is inside a critical section updating an object, it
unnecessarily prevents another thread from entering another critical sec-
tion to update a different object, thereby reducing the parallelism
exploited in the program. OpenMP therefore allows critical sections to be
named, with the following behavior: a named critical section must syn-
chronize with other critical sections of the same name but can execute
concurrently with critical sections of a different name, and unnamed criti-
cal sections synchronize only with other unnamed critical sections.

Conceptually, if an unnamed critical section is like a global lock,
named critical sections are like lock variables, with distinct names behav-
ing like different lock variables. Distinct critical sections are therefore eas-
ily specified by simply providing a name with the critical section directive.
The names for critical sections are in a distinct namespace from program
variables and therefore do not conflict with those names, but they are in
the same global namespace as subroutine names or names of common
blocks (in Fortran). Conflicts with the latter lead to undefined behavior
and should be avoided. 

      cur_max = MINUS_INFINITY
      cur_min = PLUS_INFINITY
!$omp parallel do
      do i = 1, n

         if (a(i) .gt. cur_max) then
!$omp critical (MAXLOCK)
            if (a(i) .gt. cur_max) then
               cur_max = a(i)

Example 5.10 Using named critical sections.
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            endif
!$omp end critical (MAXLOCK)
         endif

         if (a(i) .lt. cur_min) then
!$omp critical (MINLOCK)
            if (a(i) .lt. cur_min) then
               cur_min = a(i)
            endif
!$omp end critical (MINLOCK)
         endif
      enddo

Example 5.10 illustrates how named critical sections may be used.
This extended example finds both the smallest and the largest element in a
list of numbers, and therefore updates both a cur_min along with a
cur_max variable. Each of these variables must be updated within a criti-
cal section, but using a distinct critical section for each enables us to
exploit additional parallelism in the program. This is easily achieved using
named critical sections.

Nesting Critical Sections

Nesting of critical sections—that is, trying to enter one critical section
while already executing within another critical section—must be done
carefully! OpenMP does not provide any protection against deadlock, a
condition where threads are waiting for synchronization events that will
never happen. A common scenario is one where a thread executing within
a critical section invokes a subroutine that acquires a critical section of the
same name (or both critical sections could be unnamed), leading to dead-
lock. Since the nested critical section is in another subroutine, this nesting
is not immediately apparent from an examination of the code, making
such errors harder to catch.

Why doesn’t OpenMP allow a thread to enter a critical section if it has
already acquired exclusive access to that critical section? Although this
feature is easy to support, it incurs additional execution overhead, adding
to the cost of entering and leaving a critical section. Furthermore, this
overhead must be incurred at nearly all critical sections (only some simple
cases could be optimized), regardless of whether the program actually
contains nested critical sections or not. Since most programs tend to use
simple synchronization mechanisms and do not contain nested critical
sections, this overhead is entirely unnecessary in the vast majority of pro-
grams. The OpenMP designers therefore chose to optimize for the com-
mon case, leaving the burden of handling nested critical sections to the
programmer. There is one concession for nested mutual exclusion: along
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with the regular version of the runtime library lock routines (described in
Section 5.3.3), OpenMP provides a nested version of these same routines
as well.

If the program must nest critical sections, be careful that all threads
try to acquire the multiple critical sections in the same order. For instance,
suppose a program has two critical sections named min and max, and
threads need exclusive access to both critical sections simultaneously. All
threads must acquire the two critical sections in the same order (either
min followed by max, or max followed by min). Otherwise it is possible
that a thread has entered min and is waiting to enter max, while another
thread has entered max and is trying to enter min. Neither thread will be
able to succeed in acquiring the second critical section since it is already
held by the other thread, leading to deadlock.

5.3.2 The atomic Directive

Most modern shared memory multiprocessors provide hardware sup-
port for atomically updating a single location in memory. This hardware
support typically consists of special machine instructions, such as the
load-linked store-conditional (LL/SC) pair of instructions on the MIPS pro-
cessor or the compare-and-exchange (CMPXCHG) instruction on the Intel
x86 processors, that allow the processor to perform a read, modify, and
write operation (such as an increment) on a memory location, all in an
atomic fashion. These instructions use hardware support to acquire exclu-
sive access to this single location for the duration of the update. Since the
synchronization is integrated with the update of the shared location, these
primitives avoid having to acquire and release a separate lock or critical
section, resulting in higher performance.

The atomic directive is designed to give an OpenMP programmer
access to these efficient primitives in a portable fashion. Like the critical
directive, the atomic directive is just another way of expressing mutual
exclusion and does not provide any additional functionality. Rather, it
comes with a set of restrictions that allow the directive to be implemented
using the hardware synchronization primitives. The first set of restrictions
applies to the form of the critical section. While the critical directive
encloses an arbitrary block of code, the atomic directive can be applied
only if the critical section consists of a single assignment statement that
updates a scalar variable. This assignment statement must be of one of the
following forms (including their commutative variations): 

!$omp atomic
      x = x operator expr
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      ...
!$omp atomic
      x = intrinsic (x, expr)

where x is a scalar variable of intrinsic type, operator is one of a set of pre-
defined operators (including most arithmetic and logical operators), intrin-
sic is one of a set of predefined intrinsics (including min, max, and logical
intrinsics), and expr is a scalar expression that does not reference x.
Table 5.1 provides the complete list of operators in the language. The cor-
responding syntax in C and C++ is

#pragma omp atomic
x < binop >= expr
...
#pragma omp atomic
/* One of */
x++, ++x, x––, or ––x

As you might guess, these restrictions on the form of the atomic directive
ensure that the assignment can be translated into a sequence of machine
instructions to atomically read, modify, and write the memory location for x.

The second set of restrictions concerns the synchronization used for
different accesses to this location in the program. The user must ensure
that all conflicting accesses to this location are consistently protected
using the same synchronization directive (either atomic or critical). Since
the atomic and critical directive use quite different implementation mecha-
nisms, they cannot be used simultaneously and still yield correct results.
Nonconflicting accesses, on the other hand, can safely use different syn-
chronization directives since only one mechanism is active at any one
time. Therefore, in a program with distinct, nonoverlapping phases it is
permissible for one phase to use the atomic directive for a particular vari-
able and for the other phase to use the critical directive for protecting
accesses to the same variable. Within a phase, however, we must consis-
tently use either one or the other directive for a particular variable. And, of
course, different mechanisms can be used for different variables within

Language Operators

Fortran +, *, –, /, .AND., .OR., .EQV., .NEQV., 
MAX, MIN, IAND, IOR, IEOR

C/C++ +, *, –, /, &, ^, |, <<, >>

Table 5.1 List of accepted operators for the atomic directive.
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the same phase of the program. This also explains why this transformation
cannot be performed automatically (i.e., examining the code within a crit-
ical construct and implementing it using the synchronization hardware)
and requires explicit user participation.

Finally, the atomic construct provides exclusive access only to the
location being updated (e.g., the variable x above). References to variables
and side effect expressions within expr must avoid data conflicts to yield
correct results.

We illustrate the atomic construct with Example 5.11, building a histo-
gram. Imagine we have a large list of numbers where each number takes a
value between 1 and 100, and we need to count the number of instances
of each possible value. Since the location being updated is an integer, we
can use the atomic directive to ensure that updates of each element of the
histogram are atomic. Furthermore, since the atomic directive synchro-
nizes using the location being updated, multiple updates to different loca-
tions can proceed concurrently,1 exploiting additional parallelism.

      integer histogram(100)

!$omp parallel do
      do i = 1, n
!$omp atomic
         histogram(a(i)) = histogram(a(i)) + 1
      enddo

How should a programmer evaluate the performance trade-offs be-
tween the critical and the atomic directives (assuming, of course, that both
are applicable)? A critical section containing a single assignment statement
is usually more efficient with the atomic directive, and never worse. How-
ever, a critical section with multiple assignment statements cannot be
transformed to use a single atomic directive, but rather requires an atomic
directive for each statement within the critical section (assuming that each
statement meets the criteria listed above for atomic, of course). The perfor-
mance trade-offs for this transformation are nontrivial—a single critical has
the advantage of incurring the overhead for just a single synchronization
construct, while multiple atomic directives have the benefits of (1) exploit-
ing additional overlap and (2) smaller overhead for each synchronization
construct. A general guideline is to use the atomic directive when updating

1 If multiple shared variables lie within a cache line, then performance can be adversely
affected. This phenomenon is called false sharing and is discussed further in Chapter 6.

Example 5.11 Building a histogram using the atomic directive.
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either a single location or a few locations, and to prefer the critical direc-
tive when updating several locations.

5.3.3 Runtime Library Lock Routines

In addition to the critical and atomic directives, OpenMP provides a
set of lock routines within a runtime library. These routines are listed in
Table 5.2 (for Fortran and C/C++) and perform the usual set of operations
on locks such as acquire, release, or test a lock, as well as allocation and
deallocation. Example 5.12 illustrates the familiar code to find the largest
element using these library routines rather than a critical section.

      real*8 maxlock
      call omp_init_lock(maxlock)

      cur_max = MINUS_INFINITY
!$omp parallel do
      do i = 1, n
         if (a(i) .gt. cur_max) then
            call omp_set_lock(maxlock)
            if (a(i) .gt. cur_max) then
               cur_max = a(i)
            endif
            call omp_unset_lock(maxlock)
         endif
      enddo
      call omp_destroy_lock(maxlock)

Lock routines are another mechanism for mutual exclusion, but pro-
vide greater flexibility in their use as compared to the critical and atomic
directives. First, unlike the critical directive, the set/unset subroutine calls
do not have to be block-structured. The user can place these calls at arbi-
trary points in the code (including in different subroutines) and is respon-
sible for matching the invocations of the set/unset routines. Second, each
lock subroutine takes a lock variable as an argument. In Fortran this vari-
able must be sized large enough to hold an address2 (e.g., on 64-bit sys-
tems the variable must be sized to be 64 bits), while in C and C++ it must
be the address of a location of the predefined type omp_lock_t (in C and

2 This allows an implementation to treat the lock variable as a pointer to lock data structures
allocated and maintained within an OpenMP implementation.

Example 5.12 Using the lock routines.
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C++ this type, and in fact the prototypes of all the OpenMP runtime
library functions, may be found in the standard OpenMP include file
omp.h). The actual lock variable can therefore be determined dynamically,
including being passed around as a parameter to other subroutines. In
contrast, even named critical sections are determined statically based on
the name supplied with the directive. Finally, the omp_test_lock(. . .) rou-
tine provides the ability to write nondeterministic code—for instance, it
enables a thread to do other useful work while waiting for a lock to
become available.

Attempting to reacquire a lock already held by a thread results in
deadlock, similar to the behavior of nested critical sections discussed in
Section 5.3.1. However, support for nested locks is sometimes useful: For
instance, consider a recursive subroutine that must execute with mutual
exclusion. This routine would deadlock with either critical sections or the
lock routines, although it could, in principle, execute correctly without
violating any of the program requirements. 

OpenMP therefore provides another set of library routines that may be
nested—that is, reacquired by the same thread without deadlock. The
interface to these routines is very similar to the interface for the regular
routines, with the additional keyword nest, as shown in Table 5.3.

These routines behave similarly to the regular routines, with the dif-
ference that they support nesting. Therefore an omp_set_nest_lock opera-
tion that finds that the lock is already set will check whether the lock is

Language Routine Name Description

Fortran
C/C++

omp_init_lock(var)
void omp_init_lock(omp_lock_t*) 

Allocate and initialize 
the lock.

Fortran
C/C++

omp_destroy_lock(var)
void omp_destroy_lock(omp_lock_t*)

Deallocate and free 
the lock.

Fortran
C/C++

omp_set_lock(var)
void omp_set_lock(omp_lock_t*)

Acquire the lock, wait-
ing until it becomes 
available, if necessary.

Fortran
C/C++

omp_unset_lock(var)
void omp_unset_lock(omp_lock_t*)

Release the lock, 
resuming a waiting 
thread (if any).

Fortran
C/C++

logical omp_test_lock(var)
int omp_test_lock(omp_lock_t*)

Try to acquire the 
lock, return success 
(true) or failure 
(false).

Table 5.2 List of runtime library routines for lock access.
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held by the requesting thread. If so, then the set operation is successful
and continues execution. Otherwise, of course, it waits for the thread that
holds the lock to exit the critical section.

5.4 Event Synchronization

As we discussed earlier in the chapter, the constructs for mutual exclusion
provide exclusive access but do not impose any order in which the critical
sections are executed by different threads. We now turn to the OpenMP
constructs for ordering the execution between threads—these include bar-
riers, ordered sections, and the master directive.

5.4.1 Barriers

The barrier directive in OpenMP provides classical barrier synchroni-
zation between a group of threads. Upon encountering the barrier direc-
tive, each thread waits for all the other threads to arrive at the barrier.

Language Subroutine Description

Fortran
C/C++

omp_init_nest_lock (var)
void omp_init_nest_lock(omp_lock_t*)

Allocate and initialize the lock.

Fortran
C/C++

omp_destroy_nest_lock (var)
void omp_destroy_nest_lock(omp_lock_t*)

Deallocate and free the lock.

Fortran
C/C++

omp_set_nest_lock (var)
void omp_set_nest_lock(omp_lock_t*)

Acquire the lock, waiting until 
it becomes available, if neces-
sary. If lock is already held by 
the same thread, then access is 
automatically assured.

Fortran
C/C++

omp_unset_nest_lock (var)
void omp_unset_nest_lock(omp_lock_t*)

Release the lock. If this thread 
no longer has a pending lock 
acquire, then resume a wait-
ing thread (if any).

Fortran
C/C++

logical omp_test_nest_lock (var)
int omp_test_nest_lock(omp_lock_t*)

Try to acquire the lock, return 
success (true) or failure (false).
If this thread already holds the 
lock, then acquisition is 
assured, and return true.

Table 5.3 List of runtime library routines for nested lock access.
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Only when all the threads have arrived do they continue execution past
the barrier directive.

The general form of the barrier directive in Fortran is

!$omp barrier

In C and C++ it is

#pragma omp barrier

Barriers are used to synchronize the execution of multiple threads
within a parallel region. A barrier directive ensures that all the code occur-
ring before the barrier has been completed by all the threads, before any
thread can execute any of the code past the barrier directive. This is a sim-
ple directive that can be used to ensure that a piece of work (e.g., a com-
putational phase) has been completed before moving on to the next phase. 

We illustrate the barrier directive in Example 5.13. The first portion of
code within the parallel region has all the threads generating and adding
work items to a list, until there are no more work items to be generated.
Work items are represented by an index in this example. In the second
phase, each thread fetches and processes work items from this list, again
until all the items have been processed. To ensure that the first phase is
complete before the start of the second phase, we add a barrier directive at
the end of the first phase. This ensures that all threads have finished gen-
erating all their tasks before any thread moves on to actually processing
the tasks.

A barrier in OpenMP synchronizes all the threads executing within
the parallel region. Therefore, like the other work-sharing constructs, all
threads executing the parallel region must execute the barrier directive,
otherwise the program will deadlock. In addition, the barrier directive syn-
chronizes only the threads within the current parallel region, not any
threads that may be executing within other parallel regions (other parallel
regions are possible with nested parallelism, for instance). If a parallel re-
gion gets serialized, then it effectively executes with a team containing a
single thread, so the barrier is trivially complete when this thread arrives
at the barrier. Furthermore, a barrier cannot be invoked from within a
work-sharing construct (synchronizing an arbitrary set of iterations of a
parallel loop would be nonsensical); rather it must be invoked from within
a parallel region as shown in Example 5.13. It may, of course, be or-
phaned. Finally, work-sharing constructs such as the do construct or the
sections construct have an implicit barrier at the end of the construct,
thereby ensuring that the work being divided among the threads has com-
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pleted before moving on to the next piece of work. This implicit barrier
may be overridden by supplying the nowait clause with the end directive
of the work-sharing construct (e.g., end do or end sections).

!$omp parallel private(index)
      index = Generate_Next_Index()
      do while (index .ne. 0) 
         call Add_Index (index)
         index = Generate_Next_Index()
      enddo

      ! Wait for all the indices to be generated
!$omp barrier
      index = Get_Next_Index()
      do while (index .ne. 0) 
         call Process_Index (index)
         index = Get_Next_Index()
      enddo
!$omp end parallel

5.4.2 Ordered Sections

The ordered section directive is used to impose an order across the
iterations of a parallel loop. As described earlier, iterations of a parallel
loop are assumed to be independent of each other and execute concur-
rently without synchronization. With the ordered section directive, how-
ever, we can identify a portion of code within each loop iteration that must
be executed in the original, sequential order of the loop iterations.
Instances of this portion of code from different iterations execute in the
same order, one after the other, as they would have executed if the loop
had not been parallelized. These sections are only ordered relative to each
other and execute concurrently with other code outside the ordered
section.

The general form of an ordered section in Fortran is

!$omp ordered
    block
!$omp end ordered

In C and C++ it is

$pragma omp ordered
    block

Example 5.13 Illustrating the barrier directive.
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Example 5.14 illustrates the usage of the ordered section directive. It
consists of a parallel loop where each iteration performs some complex
computation and then prints out the value of the array element. Although
the core computation is fully parallelizable across iterations of the loop,
it is necessary that the output to the file be performed in the original,
sequential order. This is accomplished by wrapping the code to do the out-
put within the ordered section directive. With this directive, the computa-
tion across multiple iterations is fully overlapped, but before entering the
ordered section each thread waits for the ordered section from the previ-
ous iteration of the loop to be completed. This ensures that the output to
the file is maintained in the original order. Furthermore, if most of the time
within the loop is spent computing the necessary values, then this exam-
ple will exploit substantial parallelism as well.

!$omp parallel do ordered
      do i = 1, n
         a(i) = ... complex calculations here ...
         ! wait until the previous iteration has 
         ! finished its ordered section
!$omp ordered
         print *, a(i)
         ! signal the completion of ordered 
         !from this iteration
!$omp end ordered
      enddo

The ordered directive may be orphaned—that is, it does not have to
occur within the lexical scope of the parallel loop; rather, it can be encoun-
tered anywhere within the dynamic extent of the loop. Furthermore, the
ordered directive may be combined with any of the different schedule types
on a parallel do loop. In the interest of efficiency, however, the ordered
directive has the following two restrictions on its usage. First, if a parallel
loop contains an ordered directive, then the parallel loop directive itself
must contain the ordered clause. A parallel loop with an ordered clause
does not have to encounter an ordered section. This restriction enables the
implementation to incur the overhead of the ordered directive only when it
is used, rather than for all parallel loops. Second, an iteration of a parallel
loop is allowed to encounter at most one ordered section (it can safely
encounter no ordered section). Encountering more than one ordered sec-
tion will result in undefined behavior. Taken together, these restrictions
allow OpenMP to provide both a simple and efficient model for ordering a
portion of the iterations of a parallel loop in their original serial order.

Example 5.14 Using an ordered section.
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5.4.3 The master Directive

A parallel region in OpenMP is a construct with SPMD-style execu-
tion—that is, all threads execute the code contained within the parallel
region in a replicated fashion. In this scenario, the OpenMP master con-
struct can be used to identify a block of code within the parallel region
that must be executed by the master thread of the executing parallel team
of threads.

The precise form of the master construct in Fortran is

!$omp master
    block
!$omp end master

In C and C++ it is

#pragma omp master
    block

The code contained within the master construct is executed only by
the master thread in the team. This construct is distinct from the other
work-sharing constructs presented in Chapter 4—all threads are not
required to reach this construct, and there is no implicit barrier at the end
of the construct. If another thread encounters the construct, then it simply
skips past this block of code onto the subsequent code.

Example 5.15 illustrates the master directive. In this example all
threads perform some computation in parallel, after which the intermedi-
ate results must be printed out. We use the master directive to ensure that
the I/O operations are performed serially, by the master thread

!$omp parallel

!$omp do
      do i = 1, n
   ... perform computation ...
      enddo

!$omp master
      print *, intermediate_results
!$omp end master

     ... continue next computation phase ...
!$omp end parallel

Example 5.15 Using the master directive.
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This construct may be used to restrict I/O operations to the master
thread only, to access the master’s copy of threadprivate variables, or per-
haps just as a more efficient instance of the single directive.

5.5 Custom Synchronization: Rolling Your Own

As we have described in this chapter, OpenMP provides a wide variety of
synchronization constructs. In addition, since OpenMP provides a shared
memory programming model, it is possible for programmers to build their
own synchronization constructs using ordinary load/store references to
shared memory locations. We now discuss some of the issues in crafting
such custom synchronization and how they are addressed within OpenMP.

We illustrate the issues with a simple producer/consumer-style appli-
cation, where a producer thread repeatedly produces a data item and sig-
nals its availability, and a consumer thread waits for a data value and then
consumes it. This coordination between the producer and consumer
threads can easily be expressed in a shared memory program without
using any OpenMP construct, as shown in Example 5.16. 

Producer Thread Consumer Thread
data = ...
flag = 1 do while (flag .eq. 0)

... = data
Although the code as written is basically correct, it assumes that the

various read/write operations to the memory locations data and flag are
performed in strictly the same order as coded. Unfortunately this assump-
tion is all too easily violated on modern systems—for instance, a compiler
may allocate either one (or both) of the variables in a register, thereby
delaying the update to the memory location. Another possibility is that the
compiler may reorder either the modifications to data and flag in the pro-
ducer, or conversely reorder the reads of data and flag in the consumer.
Finally, the architecture itself may cause the updates to data and flag to be
observed in a different order by the consumer thread due to reordering of
memory transactions in the memory interconnect. Any of these factors can
cause the consumer to observe the memory operations in the wrong order,
leading to incorrect results (or worse yet, deadlock).

While it may seem that the transformations being performed by the
compiler/architecture are incorrect, these transformations are common-
place in modern computer systems—they cause no such correctness prob-

Example 5.16 A producer/consumer example.
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lems in sequential (i.e., nonparallel) programs and are absolutely essential
to obtaining high performance in those programs. Even for parallel pro-
grams the vast majority of code portions do not contain synchronization
through memory references and can safely be optimized using the trans-
formations above. For a detailed discussion of these issues, see [AG 96]
and [KY 95]. Given the importance of these transformations to perfor-
mance, the approach taken in OpenMP is to selectively identify the code
portions that synchronize directly through shared memory, thereby dis-
abling these troublesome optimizations for those code portions.

5.5.1 The flush Directive

OpenMP provides the flush directive, which has the following form:

!$omp flush [(list)] (in Fortran)
#pragma omp flush [(list)] (in C and C++)

where list is an optional list of variable names.
The flush directive in OpenMP may be used to identify a synchroniza-

tion point in the program. We define a synchronization point as a point in
the execution of the program where the executing thread needs to have a
consistent view of memory. A consistent view of memory has two require-
ments. The first requirement is that all memory operations, including read
and write operations, that occur before the flush directive in the source pro-
gram must be performed before the synchronization point in the executing
thread. In a similar fashion, the second requirement is that all memory
operations that occur after the flush directive in the source code must be
performed only after the synchronization point in the executing thread.
Taken together, a synchronization point imposes a strict order upon the
memory operations within the executing thread: at a synchronization point
all previous read/write operations must have been performed, and none of
the subsequent memory operations should have been initiated. This behav-
ior of a synchronization point is often called a memory fence, since it inhib-
its the movement of memory operations across that point.

Based on these requirements, an implementation (i.e., the combina-
tion of compiler and processor/architecture) cannot retain a variable in a
register/hardware buffer across a synchronization point. If the variable is
modified by the thread before the synchronization point, then the updated
value must be written out to memory before the synchronization point;
this will make the updated value visible to other threads. For instance, a
compiler must restore a modified value from a register to memory, and
hardware must flush write buffers, if any. Similarly, if the variable is read
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by the thread after the synchronization point, then it must be retrieved
from memory before the first use of that variable past the synchronization
point; this will ensure that the subsequent read fetches the latest value of
the variable, which may have changed due to an update by another
thread.

At a synchronization point, the compiler/architecture is required to
flush only those shared variables that might be accessible by another
thread. This requirement does not apply to variables that cannot be ac-
cessed by another thread, since those variables could not be used for com-
munication/synchronization between threads. A compiler, for instance,
can often prove that an automatic variable cannot be accessed by any
other thread. It may then safely allocate that variable in a register across
the synchronization point identified by a flush directive.

By default, a flush directive applies to all variables that could poten-
tially be accessed by another thread. However, the user can also choose to
provide an optional list of variables with the flush directive. In this sce-
nario, rather than applying to all shared variables, the flush directive
instead behaves like a memory fence for only the variables named in the
flush directive. By carefully naming just the necessary variables in the flush
directive, the programmer can choose to have the memory fence for those
variables while simultaneously allowing the optimization of other shared
variables, thereby potentially gaining additional performance.

The flush directive makes only the executing thread’s view of memory
consistent with global shared memory. To achieve a globally consistent
view across all threads, each thread must execute a flush operation.

Finally, the flush directive does not, by itself, perform any synchroni-
zation. It only provides memory consistency between the executing thread
and global memory, and must be used in combination with other read/
write operations to implement synchronization between threads.

Let us now illustrate how the flush directive would be used in the pre-
vious producer/consumer example. For correct execution the program in
Example 5.17 requires that the producer first make all the updates to data,
and then set the flag variable. The first flush directive in the producer
ensures that all updates to data are flushed to memory before touching
flag. The second flush ensures that the update of flag is actually flushed to
memory rather than, for instance, being allocated into a register for the rest
of the subprogram. On the consumer side, the consumer must keep reading
the memory location for flag—this is ensured by the first flush directive,
requiring flag to be reread in each iteration of the while loop. Finally, the
second flush assures us that any references to data are made only after the
correct value of flag has been read. Together, these constraints provide a
correctly running program that can, at the same time, be highly optimized
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in code portions without synchronization, as well as in code portions con-
tained between synchronization (i.e., flush) points in the program.

Producer Thread Consumer Thread
    data = ...
!$omp flush (data)
    flag = 1 do 
!$omp flush  (flag) !$omp flush (flag)

while (flag .eq. 0)
!$omp flush (data)

... = data
Experienced programmers reading the preceding description about the

flush directive have probably encountered this problem in other shared
memory programming models. Unfortunately this issue has either been
ignored or addressed in an ad hoc fashion in the past. Programmers have
resorted to tricks such as inserting a subroutine call (perhaps to a dummy
subroutine) at the desired synchronization point, hoping to thereby pre-
vent compiler optimizations across that point. Another trick is to declare
some of the shared variables as volatile and hope that a reference to a vol-
atile variable at a synchronization point would also inhibit the movement
of all other memory operations across that synchronization point. Unfortu-
nately these tricks are not very reliable. For instance, modern compilers
may inline a called subroutine or perform interprocedural analyses that
enable optimizations across a call. In a similar vein, the interpretation of
the semantics of volatile variable references and their effect on other, non-
volatile variable references has unfortunately been found to vary from one
compiler to another. As a result these tricks are generally unreliable and
not portable from one platform to another (sometimes not even from one
compiler release to the next). With the flush directive, therefore, OpenMP
provides a standard and portable way of writing custom synchronization
through regular shared memory operations.

5.6 Some Practical Considerations

We now discuss a few practical issues that arise related to synchronization
in parallel programs. The first issue concerns the behavior of library rou-
tines in the presence of parallel execution, the second has to do with wait-
ing for a synchronization request to be satisfied, while the last issue
examines the impact of cache lines on the performance of synchronization
constructs.

Example 5.17 A producer/consumer example using the flush directive.
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Most programs invoke library facilities—whether to manage dynami-
cally allocated storage through malloc/free operations, to perform I/O and
file operations, or to call mathematical routines such as a random number
generator or a transcendental function. Questions then arise: What as-
sumptions can the programmer make about the behavior of these library
facilities in the presence of parallel execution? What happens when these
routines are invoked from within a parallel piece of code, so that multiple
threads may be invoking multiple instances of the same routine concur-
rently?

The desired behavior, clearly, is that library routines continue to work
correctly in the presence of parallel execution. The most natural behavior
for concurrent library calls is to behave as if they were invoked one at a
time, although in some nondeterministic order that may vary from one
execution to the next. For instance, the desired behavior for malloc and
free is to continue to allocate and deallocate storage, maintaining the
integrity of the heap in the presence of concurrent calls. Similarly, the
desired behavior for I/O operations is to perform the I/O in such a fashion
that an individual I/O request is perceived to execute atomically, although
multiple requests may be interleaved in some order. For other routines,
such as a random number generator, it may even be sufficient to simply
generate a random number on a per-thread basis rather than coordinating
the random number generation across multiple threads.

Such routines that continue to function correctly even when invoked
concurrently by multiple threads are called thread-safe routines. Although
most routines don’t start out being thread-safe, they can usually be made
thread-safe through a variety of schemes. Routines that are “pure”—that is,
those that do not contain any state but simply compute and return a value
based on the value of the input parameters—are usually automatically
thread-safe since there is no contention for any shared resources across
multiple invocations. Most other routines that do share some state (such as
I/O and malloc/free) can usually be made thread-safe by adding a trivial
lock/unlock pair around the entire subroutine (to be safe, we would pre-
ferably add a nest_lock/nest_unlock). The lock/unlock essentially makes
the routine single-threaded—that is, only one invocation can execute at any
one time, thereby maintaining the integrity of each individual call. Finally,
for some routines we can often rework the underlying algorithm to enable
multiple invocations to execute concurrently and provide the desired
behavior; we suggested one such candidate in the random number genera-
tor routine.

Although thread safety is highly desirable, the designers of OpenMP
felt that although they could prescribe the behavior of OpenMP constructs,
they could not dictate the behavior of all library routines on a system.
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Thread safety, therefore, has been left as a vendor-specific issue. It is the
hope and indeed the expectation that over time libraries on most vendors
will become thread-safe and function correctly. Meanwhile, you the pro-
grammer will have to determine the behavior provided on your favorite
platform.

The second issue is concerned with the underlying implementation,
rather than the semantics of OpenMP itself. This issue relates to the mech-
anism used by a thread to wait for a synchronization event. What does a
thread do when it needs to wait for an event such as a lock to become
available or for other threads to arrive at a barrier? There are several
implementation options in this situation. At one extreme the thread could
simply busy-wait for the synchronization event to occur, perhaps by spin-
ning on a flag in shared memory. Although this option will inform the
thread nearly immediately once the synchronization is signaled, the wait-
ing thread can adversely affect the performance of other processes on the
system. For instance, it will consume processor cycles that could have
been usefully employed by another thread, and it may cause contention
for system resources such as the bus, network, and/or the system mem-
ory. At the other extreme the waiting thread could immediately surrender
the underlying processor to some other runnable process and block, wait-
ing to resume execution only when the synchronization event has been
signaled. This option avoids the waste in system resources, but may incur
some delay before the waiting thread is informed of the synchronization
event. Furthermore, it will incur the context switch overhead in blocking
and then unblocking the waiting thread. Finally, there is a range of inter-
mediate options as well, such as busy-waiting for a while followed by
blocking, or busy-waiting combined with an exponential back-off scheme.

This is clearly an implementation issue, so that the OpenMP program-
mer need never be concerned about it, particularly from a correctness or
semantic perspective. It does have some impact on performance, so the
advanced programmer would do well to be aware of these implementation
issues on their favorite platform.

Finally, we briefly mention the impact of the underlying cache on the
performance of synchronization constructs. Since all synchronization
mechanisms fundamentally coordinate the execution of multiple threads,
they require the communication of variables between multiple threads. At
the same time, cache-based machines communicate data between proces-
sors at the granularity of a cache line, typically 64 to 128 bytes in size. If
multiple variables happen to be located within the same cache line, then
accesses to one variable will cause all the other variables to also be moved
around from one processor to another. This phenomenon is called false
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sharing and is discussed in greater detail in Chapter 6. For now it is suffi-
cient to mention that since synchronization variables are likely to be
heavily communicated, we would do well to be aware of this accidental
sharing and avoid it by padding heavily communicated variables out to a
cache line.

5.7 Concluding Remarks

This chapter gave a detailed description of the various synchronization
constructs in OpenMP. Although OpenMP provides a range of such con-
structs, there is a deliberate attempt to provide a hierarchy of mechanisms.
The goal in OpenMP has been to make it easy to express simple synchroni-
zation requirements—for instance, a critical section or a barrier requires
only a single directive, yet at the same time also provides powerful mecha-
nisms for more complex situations—such as the atomic and flush direc-
tives. Taken together, this hierarchy of control tries to provide flexible
constructs for the needs of complex situations without cluttering the con-
structs required by the more common and simpler programs.

5.8 Exercises

1. Rewrite Example 5.8 using the atomic directive instead of critical sec-
tions.

2. Rewrite Example 5.8 using locks instead of critical sections.

3. Most modern microprocessors include special hardware to test and
modify a variable in a single instruction cycle. In this manner a shared
variable can be modified without interrupt, and this forms the basis of
most compiler implementations of critical sections. It is, however, pos-
sible to implement critical sections for two threads in software simply
using the flush directive, a status array (either “locked” or “unlocked”
for a thread), and a “turn” variable (to store the thread id whose turn
it is to enter the critical section). Rewrite Example 5.8 using a software
implementation of critical sections for two threads. How would you
modify your code to accommodate named critical sections? 

4. Generalize your software implementation of critical sections from
Exercise 3 to arbitrary numbers of threads. You will have to add
another status besides locked and unlocked.



5.8 Exercises 169

5. Consider the following highly contrived example of nested, unnamed
critical sections (the example computes a sum reduction and histo-
grams the sum as it gets generated):

integer sum, a(N), histogram(m)
!$omp parallel do 
do i = 1, N
    !$omp critical
    sum = sum + a(i)
    call histo(sum, histogram)
    !$omp end critical
enddo
end

subroutine histo(sum, histogram)
integer sum, histogram(m)
!$omp critical
histogram(sum) = histogram(sum) + 1
!$omp end critical
return
end

As you know, nesting of unnamed (or same-name) critical sections is
not allowed in OpenMP. Rewrite this example using your own soft-
ware implementation for critical sections (see Exercise 3). Did you
have to change your implementation in any way to still make it work
correctly? Can you think of a different, less contrived situation where
you might want to nest critical sections of the same name?
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6.1 Introduction

The previous chapters in this book have concentrated on explaining the
OpenMP programming language. By now, you should be proficient in writ-
ing parallel programs using the different constructs available in the lan-
guage. This chapter takes a moment to step back and ask why we would
want to write a parallel program. Writing a program in OpenMP does not
offer esthetic advantages over writing serial programs. It does not provide
algorithmic capabilities that are not already available in straight Fortran,
C, or C++. The reason to program in OpenMP is performance. We want to
utilize the power of multiple processors to solve problems more quickly.

Some problems lend themselves naturally to a programming style that
will run efficiently on multiple processors. Assuming access to a good
compiler and sufficiently large data sets, it is difficult, for example, to pro-
gram a matrix multiply routine that will not run well in parallel. On the
other hand, other problems are easy to code in ways that will run even
slower in parallel than the original serial code. Modern machines are quite
complicated, and parallel programming adds an extra dimension of com-
plexity to coding. 

In this chapter, we attempt to give an overview of factors that affect
parallel performance in general and also an overview of modern machine

CHAPTER 6

Performance
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characteristics that affect parallelism. The variety of parallel machines
developed over the years is quite large. The performance characteristics of
a vector machine such as the SGI Cray T90 is very different from the per-
formance characteristics of a bus-based multiprocessor such as the Com-
paq ProLiant 7000, and both are very different from a multithreaded
machine such as the Tera MTA. Tuning a program for one of these
machines might not help, and might even hinder, performance on another.
Tuning for all possible machines is beyond the scope of this chapter.

Although many styles of machines still exist, in recent years a large
percentage of commercially available shared memory multiprocessors
have shared fundamental characteristics. In particular, they have utilized
standard microprocessors connected together via some type of network,
and they have contained caches close to the processor to minimize the
time spent accessing memory. PC-derived machines, such as those avail-
able from Compaq, as well as workstation-derived machines, such as
those available from Compaq, HP, IBM, SGI, and Sun, all share these fun-
damental characteristics. This chapter will concentrate on getting perfor-
mance on these types of machines. Although the differences between
them can be large, the issues that affect performance on each one are
remarkably similar. In order to give concrete examples with real-world
numbers, we will choose one machine, the SGI Origin 2000, to generate
sample numbers. While the exact numbers will differ, other cache-based
microprocessor machines will have similar characteristics. The Origin
2000 we use contains sixteen 195 Mhz MIPS R10000 microprocessors,
each containing a 32 KB on-chip data cache and a 4 MB external cache. All
codes were compiled with version 7.2.1 of the MIPSPro Fortran compilers.

A few core issues dominate parallel performance: coverage, granular-
ity, load balancing, locality, and synchronization. Coverage is the percent-
age of a program that is parallel. Granularity refers to how much work is
in each parallel region. Load balancing refers to how evenly balanced the
work load is among the different processors. Locality and synchronization
refer to the cost to communicate information between different processors
on the underlying system. The next section (Section 6.2) will cover these
key issues. In order to understand locality and synchronization, some
knowledge of the machine architecture is required. We will by necessity,
then, be forced to digress a bit into a discussion of caches.

Once we have covered the core issues, Section 6.3 will discuss meth-
odologies for performance tuning of application codes. That section will
discuss both tools and general guidelines on how to approach the problem
of tuning a particular code. Finally we will have two sections covering
more advanced topics: dynamic threads in Section 6.4 and NUMA (Non-
Uniform Memory Access) considerations in Section 6.5.
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6.2 Key Factors That Impact Performance

The key attributes that affect parallel performance are coverage, granular-
ity, load balancing, locality, and synchronization. The first three are funda-
mental to parallel programming on any type of machine. The concepts are
also fairly straightforward to understand. The latter two are highly tied in
with the type of hardware we are considering—cache-based microproces-
sor systems. Their effects are often more surprising and harder to under-
stand, and their impact can be huge.

6.2.1 Coverage and Granularity

In order to get good performance on a parallel code, it is necessary to
parallelize a sufficiently large portion of the code. This is a fairly obvious
concept, but what is less obvious and what is perhaps even counterintui-
tive is that as the number of processors is increased, the performance of
the application can become dominated by the serial portions of the pro-
gram, even when those portions were relatively unimportant in the serial
execution of the program. This idea is captured in Amdahl’s law, named
after the computer architect Gene Amdahl. If F is the fraction of the code
that is parallelized and Sp is the speedup achieved in the parallel sections
of the code, the overall speedup S is given by

The formula can easily be derived as follows. In a serial execution, the
program will execute in Ts time. In the parallel execution, the serial portion
(1 – F) of the code will execute in time (1 – F)Ts, while the parallel portion
(F) will execute in time

Adding these two numbers together gives us a parallel execution time of

Dividing the serial execution time by the parallel execution time gives us
Amdahl’s law.

S 1

1 F–( ) F
Sp
-----+

-----------------------------=

FTs

Sp
---------

1 F–( )Ts
FTs
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The key insight in Amdahl’s law is that no matter how successfully we
parallelize the parallel portion of a code and no matter how many proces-
sors we use, eventually the performance of the application will be com-
pletely limited by F, the proportion of the code that we are able to
parallelize. If, for example, we are only able to parallelize code for half of
the application’s runtime, the overall speedup can never be better than
two because no matter how fast the parallel portion runs, the program will
spend half the original serial time in the serial portion of the parallel code.
For small numbers of processors, Amdahl’s law has a moderate effect, but
as the number of processors increase, the effect becomes surprisingly
large. Consider the case where we wish to achieve within 10% of linear
speedup, and the parallel portion of the code does speed up linearly. With
two processors, plugging in the formula for the case that the overall
speedup is 1.8, we get that

or F = 89%. Doing the same calculation for 10 processors and an overall
speedup of nine, we discover that F = 99%. Portions of the code that took
a meaningless 1% of the execution time when run on one processor
become extremely relevant when run on 10 processors.

Through Amdahl’s law, we have shown that it is critical to parallelize
the large majority of a program. This is the concept of coverage. High cov-
erage by itself is not sufficient to guarantee good performance. Granularity
is another issue that effects performance. Every time the program invokes
a parallel region or loop, it incurs a certain overhead for going parallel.
Work must be handed off to the slaves and, assuming the nowait clause
was not used, all the threads must execute a barrier at the end of the par-
allel region or loop. If the coverage is perfect, but the program invokes a
very large number of very small parallel loops, then performance might be
limited by granularity. The exact cost of invoking a parallel loop is actually
quite complicated. In addition to the costs of invoking the parallel loop
and executing the barrier, cache and synchronization effects can greatly
increase the cost. These two effects will be discussed in Sections 6.2.3 and
6.2.4. In this section, we are concerned with the minimum cost to invoke
parallelism, ignoring these effects. We therefore measured the overhead to
invoke an empty parallel do (a parallel do loop containing no work—i.e.,
an empty body; see Example 6.1) given different numbers of processors on
the SGI Origin 2000. The time, in cycles, is given in Table 6.1.

1.8 1

1 F–( ) F
2
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!$omp parallel do
 do ii = 1, 16
 enddo
!$omp end parallel do

In general, one should not parallelize a loop or region unless it takes
significantly more time to execute than the parallel overhead. Therefore it
may be worthwhile to determine the corresponding numbers for your spe-
cific platform.

Making these type of measurements brings to mind once again the is-
sue of loop-level parallelism versus domain decomposition. Can we im-
prove the parallel overhead by doing a coarse-grained parallel region? To
check, we measured the amount of time needed to perform just an empty
!$omp do, contained within an outer parallel region (Example 6.2). The
time, in cycles, is given in Table 6.2. The !$omp do scales much better
than the !$omp parallel do. So, we can significantly decrease our overhead
by using the coarse-grained approach.

!$omp do
 do j = 1, 16
 enddo
!$omp enddo

6.2.2 Load Balance

A chain is only as strong as its weakest link. The analog in parallel
processing is that a parallel loop (assuming no nowait) will not complete
until the last processor completes its iterations. If some processors have

Processors Cycles

1 1800
2 2400

4 2900

8 4000

16 8000

Table 6.1 Time in cycles for empty parallel do.

Example 6.1 An empty parallel do loop.

Example 6.2 An empty !$omp do.
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more work to do than other processors, performance will suffer. As previ-
ously discussed, OpenMP allows iterations of loops to be divided among
the different processors in either a static or dynamic scheme (based on the
discussion in Chapter 3, guided self-scheduling, or GSS, is really a special
form of dynamic). With static schemes, iterations are divided among the
processors at the start of the parallel region. The division is only depen-
dent on the number of iterations and the number of processors; the
amount of time spent in each iteration does not affect the division. If the
program spends an equal amount of time in every iteration, both static
and dynamic schemes will exhibit good load balancing. Simple domain
decompositions using non-sparse algorithms often have these properties.
In contrast, two classes of codes might suffer from load balancing prob-
lems: codes where the amount of work is dependent on the data and
codes with triangular loops.

Consider the problem of scaling the elements of a sparse matrix—that
is, multiplying each element by a constant. Assume the matrix is stored as
an array of pointers to row vectors. Each row vector is an array of column
positions and values. A code fragment to execute this algorithm is given in
Example 6.3. Since the code manipulates pointers to arrays, it is more eas-
ily expressed in C++.

struct SPARSE_MATRIX {
  double *element; /* actual elements of array */
  int    *index;   /* column position of elements */
  int    num_cols; /* number of columns in this row */
} *rows;
int num_rows;

...
for (i = 0; i<num_rows; i++) {
    SPARSE_MATRIX tmp = rows[i];

Processors Cycles

1 2200
2 1700

4 1700

8 1800

16 2900

Table 6.2 Time in cycles for empty !$omp do.

Example 6.3 Scaling a sparse matrix.
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    for (j = 0; j < tmp.num_cols; j++) {
        tmp.element[j] = c * tmp.element[j];
    }
}

A straightforward parallelization scheme would put a parallel for
pragma on the outer, i, loop. If the data is uniformly distributed, a simple
static schedule might perform well, but if the data is not uniformly distrib-
uted, if some rows have many more points than others, load balancing can
be a problem with static schedules. One thread might get many more
points than another, and it might then finish much later than the other. For
these types of codes, the load balancing problem can be solved by using a
dynamic schedule. With a schedule type of (dynamic,1), each thread will
take one row at a time and will only get another row when it finishes the
current row. When the first thread finishes all its work, the slowest thread
can have at most one row left to process. As long as a single row does not
have a significant fraction of the total work, all the threads will finish in
about the same time.

You might ask why not always use a dynamic scheduling algorithm. If
load balancing is the most important contributor to performance in the
algorithm, perhaps we should, but there are also costs to using dynamic
schedules. The first cost is a synchronization cost. With a (dynamic,1),
each thread must go to the OpenMP runtime system after each iteration
and ask for another iteration to execute. The system must take care to
hand out different iterations to each processor. That requires synchroniza-
tion among the processors. We will discuss synchronization in
Section 6.2.4. The amount of synchronization can be alleviated by using a
larger chunk size in the dynamic clause. Rather than handing out work
one iteration at a time, we can hand out work several iterations at a time.
By choosing a sufficiently large chunk size, we can eliminate most or all of
the synchronization cost. The trade-off is that as we increase the chunk
size, we may get back the load balancing problem. In an extreme case, we
could choose the chunk size to be num_rows/P, where P is the number of
threads. We would have the same work distribution as in the static case
and therefore the same load balancing problem. The hope is that there is a
happy medium—a chunk size large enough to minimize synchronization
yet small enough to preserve load balancing. Whether such a point exists
depends on the particular piece of code.

The second downside to using dynamic schedules is data locality. We
will discuss this issue in more detail in the next section. For now, keep in
mind that locality of data references may be an issue depending on the
algorithm. If locality is an issue, there is a good chance that the problem
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cannot be overcome by using larger chunk sizes. Locality versus load bal-
ancing is perhaps the most important trade-off in parallel programming.
Managing this trade-off can be the key to achieving good performance.

The sparse matrix example is a case where the amount of work per
iteration of a loop varies in an unpredictable, data-dependent manner.
There are also examples where the amount of work varies but varies in a
predictable manner. Consider the simple example of scaling a dense, trian-
gular matrix in Example 6.4.

for (i = 0; i < n – 1; i++) {
    for (j = i + 1; j < n; j++) {
      a[i][j] = c * a[i][j];
    }
}

We could parallelize this loop by adding a !$omp parallel for pragma
to the i loop. Each iteration has a different amount of work, but the
amount of work varies regularly. Each successive iteration has a linearly
decreasing amount of work. If we use a static schedule without a chunk
size, we will have a load balance problem. The first thread will get almost
twice as much work as the average thread. As with the sparse matrix
example, we could use a dynamic schedule. This could solve the load bal-
ancing problem but create synchronization and locality problems. For this
example, though, we do not need a dynamic schedule to avoid load bal-
ancing problems. We could use a static schedule with a relatively small
chunk size. This type of schedule will hand off iterations to the threads in
a round-robin, interleaved manner. As long as n is not too small relative to
the number of threads, each thread will get almost the same amount of
work. Since the iterations are partitioned statically, there are no synchroni-
zation costs involved. As we shall discuss in the next section, there are
potential locality issues, but they are likely to be much smaller than the
locality problems with dynamic schedules.

Based on the previous discussion, we can see that a static schedule
can usually achieve good load distribution in situations where the amount
of work per iteration is uniform or if it varies in a predictable fashion as in
the triangular loop above. When the work per iteration varies in an unpre-
dictable manner, then a dynamic or GSS schedule is likely to achieve the
best load balance. However, we have implicitly assumed that all threads
arrive at the parallel loop at the same time, and therefore distributing the
work uniformly is the best approach. If the parallel loop is instead pre-
ceded by a do or a sections construct with a nowait clause, then the

Example 6.4 Scaling a dense, triangular matrix.
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threads may arrive at the do construct at different times. In this scenario a
static distribution may not be the best approach even for regular loops,
since it would assign each thread the same amount of work, and the
threads that finish their portion of the iterations would simply have to wait
for the other threads to arrive and catch up. Instead, it may be preferable
to use a dynamic or a GSS schedule—this way the earliest arriving threads
would have an opportunity to keep processing some of the pending loop
iterations if some other threads are delayed in the previous construct,
thereby speeding up the execution of the parallel loop.

We have thus far focused on distributing the work uniformly across
threads so that we achieve maximal utilization of the available threads
and thereby minimize the loop completion time. In the next section we
address the other crucial factor affecting the desired loop schedule—
namely, data locality.

6.2.3 Locality

On modern cache-based machines, locality is often the most critical
factor affecting performance. This is the case with single-processor codes;
it is even more true with multiprocessor codes. To understand how locality
affects performance, we need to have some basic understanding of how
caches work. We give a basic overview of caches in the following subsec-
tion. For a detailed discussion of these issues, see [HP 90]. If you already
understand caches, you can safely skip the subsection.

Caches

The programmer can view a computer as a system comprising processing
elements and memory. Given a Fortran statement a(i) = b(i) + c(i), the
program can view the system as bringing in from memory to the processor
the values present in locations b(i) and c(i), computing the sum inside the
processor, and returning the result to the memory location reserved for
a(i). Programmers might like to view memory as monolithic. They would
like there to be no fundamental difference between the memory location
for one variable, a(i), and another, b(i). On uniprocessor systems (we will
discuss multiprocessors a bit later in this subsection), from a correctness
point of view, memory really is monolithic. From a performance point of
view, though, memory is not monolithic. It might take more time to bring
a(i) from memory into the processor than it does to bring in b(i), and
bringing in a(i) at one point in time of the program’s execution might take
longer than bringing it in at a later point in time.
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Two factors lead to the design of machines with varying memory
latencies. The first factor is that it is both cheaper and more feasible to
build faster memory if that memory is small. Multiple technologies exist
for building memory. Faster technologies tend to be more expensive (pre-
sumably one can also devise slow and expensive technology, but no one
will use it). That means that for a given budget, we can pay for a small
amount of faster memory and a larger amount of slower memory. We can-
not replace the slower memory with the faster one without raising costs.
Even ignoring costs, it is technologically more feasible to make accesses to
a smaller memory faster than accesses to a larger one. Part of the time
required to bring data from memory into a processor is the time required
to find the data, and part of the time is the time required to move the data.
Data moves using electrical signals that travel at a finite velocity. That
means that the closer a piece of data is to the processor, the faster it can be
brought into the processor. There is a limit to how much space exists
within any given distance from the processor. With microprocessors,
memory that can be put on the same chip as the processor is significantly
faster to access than memory that is farther away on some other chip, and
there is a limit to how much memory can be put on the processor chip.

The fact that we can build smaller amounts of faster memory would
not necessarily imply that we should. Let’s say, for example, that we can
build a system with 10 times as much slow memory that is 10 times less
expensive. Let’s say that memory references are distributed randomly
between the fast and slow memory. Since there is more slow memory,
90% of the references will be to the slow memory. Even if the fast memory
is infinitely fast, we will only speed up the program by about 10% (this
percentage can be derived using another variation of Amdahl’s law). The
costs, on the other hand, have increased by a factor of two. It is unlikely
that this trade-off is worthwhile.

The second factor that leads to the design of machines with varying
memory latencies, and that makes it worthwhile to build small but fast
memories, is the concept of locality. Locality is the property that if a pro-
gram accesses a piece of memory, there is a much higher than random
probability that it will again access the same location “soon.” A second
aspect of locality is that if a program accesses a piece of memory, there is
a much higher than random probability that it will access a nearby loca-
tion soon. The first type of locality is called temporal locality; the second is
called spatial. Locality is not a law of nature. It is perfectly possible to
write a program that has completely random or systematically nonlocal
memory behavior. Locality is just an empirical rule. Many programs natu-
rally have locality, and many others will be written to have locality if the
prevalent machines are built to take advantage of locality.
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Let us consider some examples that illustrate locality. Let us say that
we wish to zero a large array. We can zero the elements in any order, but
the natural way to zero them is in lexical order, that is, first a(0), then
a(1), then a(2), and so on. Zeroing an array this way exhibits spatial local-
ity. Now let’s assume that we want to apply some type of convolution fil-
ter to an image (e.g., a simple convolution may update each element to be
a weighted average of its neighboring values in a grid). Each element in
the image will be touched a number of times equal to the size of the filter.
If the filter is moved lexically through the image, all accesses to a given
point will occur close in time. This type of algorithm has both spatial and
temporal locality.

The prevalence of locality allows us to design a small and fast memory
system that can greatly impact performance. Consider again the case
where 10% of the memory is fast and 90% is slow. If accesses are random
and only 10% of the memory accesses are to the fast memory, the cost of
the fast memory is probably too large to be worthwhile. Caches, on the
other hand, provide a way to exploit locality to insure that a much larger
percentage of your memory references are to faster memory. 

Caches essentially work as follows. All information is kept in the
larger slower memory. Every time the system brings a memory reference
into the processor, it “caches” a copy of the data in the smaller, faster
memory, the cache. For simplicity, we will use the generic term “memory”
to refer to the slower, bigger memory and “cache” to refer to the faster,
smaller memory. Before performing a memory reference, the system
checks to see if the data is inside the cache. If the data is found, the sys-
tem does not go to memory; it just retrieves the copy of the data found in
the cache. Only when the data is not in the cache does the system go to
memory. Since the cache is smaller than the memory, it cannot contain a
copy of all the data in the memory. In other words, the cache can fill up.
In such cases, the cache must remove some other data in order to make
room for the new data. 

Whenever the user writes some data (i.e., assigns some variable), the
system has two options. In a write-through cache, the data is immediately
written back to memory. In such a system, memory and cache are always
consistent; the cache always contains the same data found in the memory.
Write-through caches are not as bad as they might seem. No computation
depends on a write completing so the system can continue to compute
while the write to memory is occurring. On the other hand, write-through
caches do require moving large amounts of data from the processor to
memory. This increases the system overhead and makes it harder to load
other data from memory concurrently. 
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The alternative to a write-through cache is a write-back cache. In
write-back caches, the system does not write the data to memory immedi-
ately. The cache is not kept consistent with memory. Instead, a bit is
added to each entry in the cache indicating whether the memory is dirty,
that is, different from the value in main memory. When the system evicts
an entry from the cache (in order to make room for other data), the system
checks the bit. If it is dirty, main memory is updated at that point. The
advantage of the write-back scheme is that a processor can potentially
write the same location multiple times before having to write a value back
to memory. In today’s systems, most caches that are not on the same chip
as the processor are write-back caches. For on-chip caches, different sys-
tems use write-back or write-through.

Let us look in more detail at caches by considering an example of a
simple cache. Assume that memory is referenced via 32-bit addresses. Each
address refers to a byte in memory. That allows for up to 4 GB of memory.
Assume a 64 KB cache organized as 8192 entries of 8 bytes (1 double word)
each. One way to build the cache is to make a table as in Figure 6.1. 

We use bits 3 through 15 of a memory address to index into the table,
and use the three bits 0 through 2 to access the byte within the 8 bytes in
that table entry. Each address maps into only one location in the cache.1

Each entry in the cache contains the 8 bytes of data, 1 bit to say whether
the entry is dirty, and a 16-bit tag. Many addresses map into the same
location in the cache, in fact all the addresses with the same value for bits
3 through 15. The system needs some way of knowing which address is
present in a given cache entry. The 16-bit tag contains the upper 16 bits of
the address present in the given cache entry. These 16 bits, along with the
13 bits needed to select the table entry and the 3 bits to select the byte
within a table entry, completely specify the original 32-bit address. Every
time the processor makes a memory reference, the system takes bits 3
through 15 of the address to index into the cache. Given the cache entry, it
compares the tag with the upper 16 bits of the memory address. If they
match, we say that there is a “cache hit.” Bits 0 through 2 are used to
determine the location within the cache entry. The data is taken from
cache, and memory is never accessed. If they do not match, we say there
is a “cache miss.” The system goes to memory to find the data. That data
replaces the data currently present in the entry of the cache. If the current
data is dirty, it must first be written out to memory. If it is not dirty, the
system can simply throw it out. This cache allows us to exploit temporal

1 Such caches are called direct mapped caches. In contrast, set associative caches allow one
memory address to map into more than one table entry. For simplicity, we will stick to direct
mapped caches although most real-world caches are set associative.
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locality. If we reference a memory location twice and in between the two
references the processor did not issue another reference with the same
value of the index bits, the second reference will hit in the cache. Real
caches are also designed to take advantage of spatial locality. Entries in a
cache are usually not 8 bytes. Instead they are larger, typically anywhere
from 32 to 256 contiguous bytes. The set of entries in a single cache loca-
tion is called the cache line. With longer cache lines, if a reference, a(i), is
a cache miss, the system will bring into the cache not only a(i) but also
a(i+1), a(i+2), and so on. 

We have described a single-level cache. Most systems today use multi-
ple levels of cache. With a two-level cache system, one can view the first
cache as a cache for the second cache, and the second cache as a cache for
memory. The Origin 2000, for example, has a 32 KB primary data cache on
the MIPS R10000 chip and a 1–4 MB secondary cache off chip. Given a
memory reference, the system attempts to find the value in the smaller pri-
mary cache. If there is a miss there, it attempts to find the reference in the
secondary cache. If there is a miss there, it goes to memory.

Multiprocessors greatly complicate the issue of caches. Given that
OpenMP is designed for shared memory multiprocessors, let us examine
the memory architecture of these machines. On a shared memory machine,
each processor can directly access any memory location in the entire sys-
tem. The issue then arises whether to have a single large cache for the
entire system or multiple smaller caches for each processor. If there is only
one cache, that cache by definition will be far away from some processors
since a single cache cannot be close to all processors. While that cache

Tag

Tag Data

Index

Memory address

Offset

31 16 15 3 2 0... ...

Dirty/
clean

8 bytes per line

8192  lines

...

...

Figure 6.1 Simplified cache.
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might be faster than memory, it will still be slower to access memory in a
faraway cache than to access memory in a nearby cache. Consequently,
most systems take the approach of having a cache for every processor. 

In an architecture with per-processor caches, if a processor references
a particular location, the data for that location is placed in the cache of the
processor that made the reference. If multiple processors reference the
same location, or even different locations in the same cache line, the data
is placed in multiple caches. As long as processors only read data, there is
no problem in putting data in multiple caches, but once processors write
data, maintaining the latest correct value of the data becomes an issue;
this is referred to as cache coherence. Let us say that processor 1 reads a
location. That data is put inside its cache. Now, let’s say that processor 2
writes the same location. If we are not careful, the data inside processor
1’s cache will be old and invalid. Future reads by processor 1 might return
the wrong value. Two solutions can be used to avoid this problem. In an
update-based protocol, when processor 2 writes the location, it must
broadcast the new value to all the caches that hold the data. The more
common protocol, though, is an invalidation-based protocol. When pro-
cessor 2 writes a location, it asks for exclusive access to the cache line. All
other caches containing this line must invalidate their entries. Once a pro-
cessor has exclusive access, it can continue to write the line as often as it
likes. If another processor again tries to read the line, the other processor
needs to ask the writing processor to give up exclusive access and convert
the line back to shared state.

Caches and Locality

In the previous subsection, we gave a basic overview of caches on multi-
processor systems. In this subsection, we go into detail on how caches can
impact the performance of OpenMP codes. Caches are designed to exploit
locality, so the performance of a parallel OpenMP code can be greatly
improved if the code exhibits locality. On the Origin 2000, for example, the
processor is able to do a load or a store every cycle if the data is already in
the primary cache. If the data is in neither the primary nor the secondary
cache, it can take about 70 cycles [HLK 97].2 Thus, if the program has no

2 The approximation of 70 cycles is a simplified number to give the reader a feel for the order
of magnitude of time. In reality, other factors greatly complicate the estimate. First, the
R10000 is an out-of-order machine that can issue multiple memory references in parallel. If
your code exhibits instruction-level parallelism, this effect can cut the perceived latency
significantly. On the other hand, the Origin 2000 is a ccNUMA machine, meaning that
some memory is closer to a processor than other memory. The 70-cycles figure assumes
you are accessing the closest memory.
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locality, it can slow down by a factor of 70. Spatial locality is often easier
to achieve than temporal locality. Stride-1 memory references3 have per-
fect spatial locality. The cache lines on the secondary cache of the Origin
are 128 bytes, or 16 double words. If the program has perfect spatial local-
ity, it will only miss every 16 references. Even so, without temporal local-
ity, the code will still slow down by about a factor of four (since we will
miss once every 16 references, and incur a cost of 70 cycles on that miss).
Even on uniprocessors, there is much that can be done to improve locality.
Perhaps the classic example on uniprocessors for scientific codes is loop
interchange to make references stride-1. Consider the following loop nest:

do i = 1, n
   do j = 1, n
      a(i, j) = 0.0
   enddo
enddo

Arrays in Fortran are stored in column-major order, meaning that the col-
umns of the array are laid out one after the other in memory. As a result,
elements from successive rows within the same column of an array are
laid out adjacently in memory; that is, the address of a(i,j) is just before
the address of a(i+1,j) but is n elements away from the address of
a(i,j+1), where n is the size of the first dimension of a. In the code exam-
ple, successive iterations of the inner loop do not access successive loca-
tions in memory. Now, there is spatial locality in the code; given a
reference to a(i,j), we will eventually access a(i+1,j). The problem is that
it will take time, in fact n iterations. During that time, there is some
chance that the line containing a(i,j) and a(i+1,j) will be evicted from the
cache. Thus, we might not be able to exploit the spatial locality. If we
interchange the two loops as follows:

do j = 1, n
   do i = 1, n
      a(i, j) = 0.0
   enddo
enddo

3 Stride refers to the distance in memory between successive references to a data structure.
Stride-1 therefore implies that multiple references are to successive memory locations, while
stride-k implies that multiple references are to locations k bytes apart.
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the array references are stride-1. Successive references in time are adjacent
in memory. There is no opportunity for the cache line to be evicted, and
we are able to fully exploit spatial locality.

Many compilers will automatically interchange loops for the user, but
sometimes more complicated and global transformations are needed to
improve locality. Discussing uniprocessor cache optimizations in detail is
beyond the scope of this book. Multiprocessor caches add significant com-
plications. With uniprocessors, the user need only worry about locality.
With multiprocessors, the user must worry about restricting locality to a
single processor. Accessing data that is in some other processor’s cache is
usually no faster than accessing data that is in memory. In fact, on the Ori-
gin 2000, accessing data that is in someone else’s cache is often more
expensive than accessing data that is in memory. With uniprocessors, the
user needs to insure that multiple references to the same or nearby loca-
tions happen close to each other in time. With multiprocessors, the user
must also insure that other processors do not touch the same cache line.

Locality and Parallel Loop Schedules

The effect of locality and multiprocessors can perhaps be best seen in the
interaction between loop schedules and locality. Consider again our exam-
ple of scaling a sparse matrix. Imagine that this scaling is part of an inter-
active image-processing algorithm where the user might scale the same
matrix multiple times. Assume that the total size of the matrix is small
enough to fit in the aggregate caches of the processors. In other words,
each processor’s portion of the matrix is small enough to fit in its cache.
After one scaling of the matrix, the matrix will be in the aggregate caches
of the processors; each processor’s cache will contain the portion of the
matrix scaled by the particular processor. Now when we do a second scal-
ing of the matrix, if a processor receives the same portions of the matrix to
scale, those portions will be in its cache, and the scaling will happen very
fast. If, on the other hand, a processor receives different portions of the
matrix to scale, those portions will be in some other processor’s cache,
and the second scaling will be slow. If we had parallelized the code with a
static schedule, every invocation of the scaling routine would divide the
iterations of the loop the same way; the processor that got iteration i on
the first scaling would get the same iteration on the second scaling. Since
every iteration i always touches the same data, every processor would
scale the same portions of the matrix. With a dynamic schedule, there is
no such guarantee. Part of the appeal of dynamic schedules is that itera-
tions are handed out to the first processor that needs more work. There is
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no guarantee that there will be any correlation between how work was
handed out in one invocation versus another.

How bad is the locality effect? It depends on two different factors. The
first is whether each processor’s portion of the data is small enough to fit
in cache. If the data fits in cache, a bad schedule means that each proces-
sor must access data in some other cache rather than its own. If the data is
not small enough, most or all of the data will be in memory, regardless of
the schedule. In such cases, dynamic schedules will have minimal impact
on performance. To measure the effect, we parallelized a dense version of
the matrix scaling algorithm applied repeatedly to a piece of data:

do i = 1, n
    do j = 1, n
        a(j, i) = 2.0 * a(j, i)
    enddo
enddo

We experimented with three different data set sizes; 400 by 400, 1000 by
1000 and 4000 by 4000. We ran each data size with both a static and a
dynamic schedule on both one and eight processors. The dynamic sched-
ule was chosen with a chunk size sufficiently large to minimize synchroni-
zation costs. The sizes were chosen so that the 400 by 400 case would fit
in the cache of a single processor, the 1000 by 1000 case would be bigger
than one processor’s cache but would fit in the aggregate caches of the
eight processors, and the 4000 by 4000 case would not fit in the aggregate
caches of the eight processors.

We can see several interesting results from the data in Table 6.3. For
both cases where the data fits in the aggregate caches, the static case is
about a factor of 10 better than the dynamic case. The penalty for losing
locality is huge. In the 400 by 400 case, the dynamic case is even slower
than running on one processor. This shows that processing all the data
from one’s own cache is faster than processing one-eighth of the data from
some other processor’s cache. In the 1000 by 1000 case, the static schedule

Size
Static
Speedup

Dynamic
Speedup

Ratio: Static/ 
Dynamic

400 x 400 6.2 0.6 9.9
1000 x 1000 18.3 1.8 10.3
4000 x 4000 7.5 3.9 1.9

Table 6.3 Static versus dynamic schedule for scaling.
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speeds up superlinearly, that is, more than by the number of processors.
Processing one-eighth of the data from one’s own cache is more than eight
times faster than processing all the data from memory. For this data set
size, the dynamic case does speed up a little bit over the single-processor
case. Processing one-eighth of the data from someone else’s cache is a lit-
tle bit faster than processing all of the data from memory. Finally, in the
large 4000 by 4000 case, the static case is faster than the dynamic, but not
by such a large amount.4

We mentioned that there were two factors that influence how impor-
tant locality effects are to the choice of schedule. The first is the size of
each processor’s data set. Very large data sets are less influenced by the in-
teraction between locality and schedules. The second factor is how much
reuse is present in the code processing a chunk of iterations. In the scaling
example, while there is spatial locality, there is no temporal locality within
the parallel loop (the only temporal locality is across invocations of the
parallel scaling routine). If, on the other hand, there is a large amount of
temporal reuse within a parallel chunk of work, scheduling becomes un-
important. If the data is going to be processed many times, where the data
lives at the start of the parallel loop becomes mostly irrelevant. Consider,
as an example, matrix multiply. Matrix multiplication does O(n3) com-
putation on O(n2) data. There is, therefore, a lot of temporal locality as
well as spatial locality. We timed a 1000 by 1000 matrix multiply on an
eight-processor Origin 2000 using both static and dynamic schedules. The
static schedule achieved a speedup of 7.5 while the dynamic achieved a
speedup of 7.1.

From the scaling and matrix multiply examples we have given, one
might conclude that it is always better to use static schedules, but both
examples are cases with perfect load balance. Locality can make such a
large difference that for cases such as the in-cache scaling example, it is
probably always better to use a static schedule, regardless of load balance.
On the other hand, for cases such as matrix multiply, the dynamic penalty
is fairly small. If load balancing is an issue, dynamic scheduling would
probably be better. There is a fundamental trade-off between load balanc-
ing and locality. Dealing with the trade-off is unfortunately highly depen-
dent on your specific code.

4 On some machines, dynamic and static schedules for the large data set might yield almost
identical performance. The Origin 2000 is a NUMA machine, and on NUMA machines local-
ity can have an impact on memory references as well as cache references. NUMA will be
described in more detail at the end of the chapter.
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False Sharing

Even with static schedules, good locality is not guaranteed. There are a
few common, easy-to-fix errors that can greatly hurt locality. One of the
more common is false sharing. Consider counting up the even and odd
elements of an array in Example 6.5.

Every processor accumulates its portion of the result into a local por-
tion of an array, local_s. At the end of the work-shared parallel loop, each
processor atomically increments the shared array, is, with its portion of
the local array, local_s. Sounds good, no?

      integer local_s(2, MAX_NUM_THREADS)

!$omp parallel private(my_id)
      my_id = omp_get_thread_num() + 1

!$omp do schedule(static) private(index)
      do i = 1, n
         index = MOD(ia(i), 2) + 1
         local_s(index, my_id) = local_s(index, my_id) + 1
      enddo

!$omp atomic
      is(1) = is(1) + local_s(1, my_id)
!$omp atomic
      is(2) = is(2) + local_s(2, my_id)
!$omp end parallel

The problem comes with how we create local_s. Every cache line
(entry in the table) contains multiple contiguous words, in the case of the
Origin 2000, 16 eight-byte words. Whenever there is a cache miss, the
entire cache line needs to be brought into the cache. Whenever a word is
written, every other address in the same cache line must be invalidated in
all of the other caches in the system. In this example, the different proces-
sors’ portions of local_s are contiguous in memory. Since each processor’s
portion is significantly smaller than a cache line, each processor’s portion
of local_s shares a cache line with other processors’ portions. Each time a
processor updates its portion, it must first invalidate the cache line in all
the other processors’ caches. The cache line is likely to be dirty in some
other cache. That cache must therefore send the data to the new processor
before that processor updates its local portion. The cache line will thus
ping-pong among the caches of the different processors, leading to poor

Example 6.5 Counting the odd and even elements of an array.
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performance. We call such behavior false sharing because a cache line is
being shared among multiple processors even though the different proces-
sors are accessing distinct data. We timed this example on an Origin using
eight processors and a 1,000,000-element data array, ia. The parallel code
slows down by a factor of 2.3 over the serial code. However, we can mod-
ify the code.

      integer local_s(2)

!$omp parallel private(local_s)
      local_s(1) = 0
      local_s(2) = 0
!$omp do schedule(static) private(index)
      do i = 1, n
         index = MOD(ia(i), 2) + 1
         local_s(index) = local_s(index) + 1
      enddo
!$omp atomic
      is(1) = is(1) + local_s(1)
!$omp atomic
      is(2) = is(2) + local_s(2)
!$omp end parallel

Instead of using a shared array indexed by the processor number to
hold the local results, we use the private clause as shown in Example 6.6.
The system insures that each processor’s local_s array is on different cache
lines. The code speeds up by a factor of 7.5 over the serial code, or a factor
of 17.2 over the previous parallel code.

Other types of codes can also exhibit false sharing. Consider zeroing
an array:

!$omp parallel do schedule(static)
      do i = 1, n
         do j = 1, n
            a(i, j) = 0.0
         enddo
      enddo

We have divided the array so that each processor gets a contiguous set of
rows, as shown in Figure 6.2. Fortran, though, is a column major lan-
guage, with elements of a column allocated in contiguous memory loca-
tions. Every column will likely use distinct cache lines, but multiple
consecutive rows of the same column will use the same cache line.

Example 6.6 Counting the odd and even elements of an array using distinct cache lines.
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If we parallelize the i loop, we divide the array among the processors
by rows. In every single column, there will be cache lines that are falsely
shared among the processors. If we instead interchange the loops, we
divide the array among the processors by columns, as shown in Figure 6.3.
For any consecutive pair of processors, there will be at most one cache line
that is shared between the two. The vast majority of the false sharing will
be eliminated.

Inconsistent Parallelization

Another situation that can lead to locality problems is inconsistent paral-
lelization. Imagine the following set of two loops:

Processor 0

Processor 1

...
...

Figure 6.2 Dividing rows across processors.

...

...P0 P1

Figure 6.3 Dividing columns across processors.
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do i = 1, N
    a(i) = b(i)
enddo
do i = 1, N
    a(i) = a(i) + a(i – 1)
enddo

The first loop can be trivially parallelized. The second loop cannot eas-
ily be parallelized because every iteration depends on the value of a(i–1)
written in the previous iteration. We might have a tendency to parallelize
the first loop and leave the second one sequential. But if the arrays are
small enough to fit in the aggregate caches of the processors, this can be
the wrong decision. By parallelizing the first loop, we have divided the a
matrix among the caches of the different processors. Now the serial loop
starts and all the data must be brought back into the cache of the master
processor. As we have seen, this is potentially very expensive, and it might
therefore have been better to let the first loop run serially.

6.2.4 Synchronization

The last key performance factor that we will discuss is synchroniza-
tion. We will consider two types of synchronization: barriers and mutual
exclusion.

Barriers

Barriers are used as a global point of synchronization. A typical use of bar-
riers is at the end of every parallel loop or region. This allows the user to
consider a parallel region as an isolated unit and not have to consider
dependences between one parallel region and another or between one par-
allel region and the serial code that comes before or after the parallel
region. Barriers are very convenient, but on a machine without special
support for them, barriers can be very expensive. To measure the time for
a barrier, we timed the following simple loop on our Origin 2000:

!$omp parallel
      do i = 1, 1000000
!$omp barrier
      enddo
!$omp end parallel

On an eight-processor system, it took approximately 1000 cycles per
barrier. If the program is doing significantly more than 1000 cycles of work
in between barriers, this time might be irrelevant, but if we are paralleliz-
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ing very small regions or loops, the barrier time can be quite significant.
Note also that the time for the actual barrier is not the only cost to using
barriers. Barriers synchronize all the processors. If there is some load
imbalance and some processors reach the barrier later than other proces-
sors, all the processors have to wait for the slow ones. On some codes, this
time can be the dominant effect.

So, how can we avoid barriers? First, implicit barriers are put at the
end of all work-sharing constructs. The user can avoid these barriers by
use of the nowait clause. This allows all threads to continue processing at
the end of a work-sharing construct without having to wait for all the
threads to complete. Of course, the user must insure that it is safe to elim-
inate the barrier in this case. Another technique to avoiding barriers is to
coalesce multiple parallel loops into one. Consider Example 6.7.

!$omp parallel do
      do i = 1, n
         a(i) = ...
      enddo

!$omp parallel do
      do i = 1, n
         b(i) = a(i) + ...
      enddo

There is a dependence between the two loops, so we cannot simply
run the two loops in parallel with each other, but the dependence is only
within corresponding iterations. Iteration i of the second loop can not pro-
ceed until iteration i of the first loop is finished, but all other iterations of
the second loop do not depend on iteration i. We can eliminate a barrier
(and also the overhead cost for starting a parallel loop) by fusing the two
loops together as follows in Example 6.8.

!$omp parallel do
      do i = 1, n
         a(i) = ...
         b(i) = a(i) + ...
      enddo

Barriers are an all-points form of synchronization. Every processor
waits for every other processor to finish a task. Sometimes, this is exces-
sive; a processor only needs to wait for one other processor. Consider a
simple two-dimensional recursive convolution:

Example 6.7 Code with multiple adjacent parallel loops.

Example 6.8 Coalescing adjacent parallel loops.
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do j = 2, n – 1
    do i = 2, n – 1
        a(i, j) = 0.5 * a(i, j) + 0.125 * (a(i – 1, j) + 
                             a(i + 1, j) + a(i, j – 1) + 
                             a(i, j + 1))
    enddo
enddo

Neither loop is parallel by itself, but all the points on a diagonal can be
run in parallel. One potential parallelization technique is to skew the loop
so that each inner loop covers a diagonal of the original:

do j = 4, 2 * n – 2
    do i = max(2, j – n + 1), min(n – 1, j – 2)
        a(i, j – i) = 0.5 * a(i, j – i) + 0.125 * 
                    (a(i – 1, j – i) + a(i + 1, j – i) +
                     a(i, j – i – 1) + a(i, j – i + 1))
    enddo
enddo

After this skew, we can put a parallel do directive on the inner loop.
Unfortunately, that puts a barrier in every iteration of the outer loop.
Unless n is very large, this is unlikely to be efficient enough to be worth it.
Note than a full barrier is not really needed. A point on the diagonal does
not need to wait for all of the previous diagonal to be finished; it only
needs to wait for points in lower-numbered rows and columns. For exam-
ple, the processor processing the first element of each diagonal does not
need to wait for any other processor. The processor processing the second
row need only wait for the first row of the previous diagonal to finish.

We can avoid the barrier by using an alternative parallelization scheme.
We divide the initial iteration space into blocks, handing n/p columns to
each processor. Each processor’s portion is not completely parallel. A pro-
cessor cannot start a block until the previous processor has finished its cor-
responding block. We add explicit, point-to-point synchronization to insure
that no processor gets too far ahead. This is illustrated in Figure 6.4, where
each block spans n/p columns, and the height of each block is one row.

Parallelizing this way has not increased the amount of parallelism. In
fact, if the height of each of the blocks is one row, the same diagonal will
execute in parallel. We have, though, made two improvements. First with
the previous method (skewing), each processor must wait for all the other
processors to finish a diagonal; with this method (blocking), each proces-
sor only needs to wait for the preceding processor. This allows a much
cheaper form of synchronization, which in turn allows early processors to
proceed more quickly. In fact, the first processor can proceed without any
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synchronization. The second advantage is that we are able to trade off
synchronization for parallelism. With the skewing method, we have a bar-
rier after every diagonal. With this method, we have a point-to-point syn-
chronization after each block. At one extreme we can choose the block
size to be one row. Each processor will synchronize n times, just as with
the skewing method. At the other extreme, we make each block n rows,
and the entire code will proceed sequentially. By choosing a size in the
middle, we can trade off load balancing for synchronization.

Mutual Exclusion

Another common reason for synchronization is mutual exclusion. Let us
say, for example, that multiple processors are entering data into a binary
tree. We might not care which processor enters the data first, and it might
also be fine if multiple processors enter data into different parts of the tree
simultaneously, but if multiple processors try to enter data to the same
part of the tree at the same time, one of the entries may get lost or the tree
might become internally inconsistent. We can use mutual exclusion con-
structs, either locks or critical sections, to avoid such problems. By using a
critical section to guard the entire tree, we can insure that no two proces-
sors update any part of the tree simultaneously. By dividing the tree into
sections and using different locks for the different sections, we can ensure
that no two processors update the same part of the tree simultaneously,
while still allowing them to update different portions of the tree at the
same time. 

As another example, consider implementing a parallel sum reduction.
One way to implement the reduction, and the way used by most compilers
implementing the reduction clause, is to give each processor a local sum

P0Processor P1 P4P3P2

Figure 6.4 Point-to-point synchronization between blocks.



196 Chapter 6—Performance

and to have each processor add its local sum into the global sum at the
end of the parallel region. We cannot allow two processors to update the
global sum simultaneously. If we do, one of the updates might get lost. We
can use a critical section to guard the global update.

How expensive is a critical section? To check, we timed the program
in Example 6.9. The times in cycles per iteration for different processor
counts are given in Table 6.4.

!$omp parallel
      do i = 1, 1000000
!$omp critical
!$omp end critical
      enddo
!$omp end parallel

It turns out that the time is very large. It takes about 10 times as long
for eight processors to do a critical section each than it takes for them to
execute a barrier (see the previous subsection). As we increase the num-
ber of processors, the time increases quadratically. 

Why is a critical section so expensive compared to a barrier? On the
Origin, a barrier is implemented as P two-way communications followed
by one broadcast. Each slave writes a distinct memory location telling the
master that it has reached the barrier. The master reads the P locations.
When all are set, it resets the locations, thereby telling all the slaves that
every slave has reached the barrier. Contrast this with a critical section.
Critical sections on the Origin and many other systems are implemented
using a pair of hardware instructions called LLSC (load-linked, store con-
ditional). The load-linked instruction operates like a normal load. The
store conditional instruction conditionally stores a new value to the loca-
tion only if no other processor has updated the location since the load.
These two instructions together allow the processor to atomically update
memory locations. How is this used to implement critical sections? One

Processors Cycles

1 100
2 400

4 2500

8 11,000

Example 6.9 Measuring the contention for a critical section.

Table 6.4 Time in cycles for doing P critical sections.
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processor holds the critical section and all the others try to obtain it. The
processor releases the critical section by writing a memory location using
a normal store. In the meantime, all the other processors are spinning,
waiting for the memory location to be written. These processors are con-
tinuously reading the memory location, waiting for its value to change.
Therefore, the memory location is in every processor’s cache. Now, the
processor that holds the critical section decides to release it. It writes the
memory location. Before the write can succeed, the location must be
invalidated in the cache of every other processor. Now the write succeeds.
Every processor immediately reads the new value using the load-linked
instruction. One processor manages to update the value using the store
conditional instruction, but to do that it must again invalidate the location
in every other cache. So, in order to acquire and release a critical section,
two messages must be sent from one processor to all the others. In order
for every processor to acquire and release a critical section, 2P messages
must be sent from one processor to all the others. This is a very expensive
process.

How can we avoid the large expense of a critical section? First, a criti-
cal section is only really expensive if it is heavily contended by multiple
processors. If one processor repeatedly attempts to acquire a critical sec-
tion, and no other processor is waiting, the processor can read and write
the memory location directly in its cache. There is no communication. If
multiple processors are taking turns acquiring a critical section, but at
intervals widely enough spaced in time so that when one processor
acquires the critical section no other processors are spinning, the proces-
sor that acquires the critical section need only communicate with the last
processor to have the critical section, not every other processor. In either
case, a key improvement is to lower the contention for the critical section.
When updating the binary tree, do not lock the entire tree. Just lock the
section that you are interested in. Multiple processors will be able to lock
multiple portions of the tree without contending with each other. 

Consider the following modification of Example 6.9, where instead
every processor locks and unlocks one of 100 locks rather than one critical
section:

!$omp parallel
    do i = 1, 1000000
        call omp_set_lock(lock(mod(i, 100) + 1))
        call omp_unset_lock(lock(mod(i, 100) + 1))
    enddo
!$omp end parallel
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If only one lock was used, the performance would be exactly equivalent to
the critical section, but by using 100 locks, we have greatly reduced the
contention for any one lock. While every locking and unlocking still
requires communication, it typically requires a two-way communication
rather than a P-way communication. The time to execute this sequence on
eight processors is about 500 cycles per iteration, much better than the
10,000 cycles we saw for the contended critical section.

Another approach to improving the efficiency of critical sections is
using the atomic directive. Consider timing a series of atomic increments:

      do i = 1, 1000000
!$omp critical
         isum = isum + i
!$omp end critical
      enddo

On eight processors, this takes approximately the same 11,000 cycles
per iteration as the empty critical section. If we instead replace the critical
section with an atomic directive, the time decreases to about 5000 cycles
per iteration. The critical section version of the increment requires three
separate communications while the atomic only requires one. As we men-
tioned before, an empty critical section requires two communications, one
to get the critical section and one to release it. Doing an increment adds a
third communication. The actual data, isum, must be moved from one
processor to another. Using the atomic directive allows us to update isum
with only one communication. We can implement the atomic in this case
with a load-linked from isum, followed by an increment, followed by a
store conditional to isum (repeated in a loop for the cases that the store
conditional fails). The location isum is used both to synchronize the com-
munication and to hold the data.

The use of atomic has the additional advantage that it leads to the
minimal amount of contention. With a critical section, multiple variables
might be guarded by the same critical section, leading to unnecessary con-
tention. With atomic, only accesses to the same location are synchronized.
There is no excessive contention.

6.3 Performance-Tuning Methodology

We have spent the bulk of this chapter discussing characteristics of cache-
based shared memory multiprocessors and how these characteristics inter-
act with OpenMP to affect the performance of parallel programs. Now we
are going to shift gears a bit and talk in general about how to go about
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improving the performance of parallel codes. Specific approaches to tun-
ing depend a lot on the performance tools available on a specific platform,
and there are large variations in the tools supported on different platforms.
Therefore, we will not go into too much specific detail, but instead shall
outline some general principles.

As discussed in earlier chapters, there are two common styles of pro-
gramming in the OpenMP model: loop-level parallelization and domain
decomposition. Loop-level parallelization allows for an incremental ap-
proach to parallelization. It is easier to start with a serial program and
gradually parallelize more of the code as necessary. When using this tech-
nique, the first issue to worry about is coverage. Have you parallelized
enough of your code? And if not, where should you look for improve-
ments? It is important not to waste time parallelizing a piece of code that
does not contribute significantly to the application’s execution time. Paral-
lelize the important parts of the code first.

Most (if not all) systems provide profiling tools to determine what
fraction of the execution time is spent in different parts of the source code.
These profilers tend to be based on one of two approaches, and many sys-
tems provide both types. The first type of profiler is based on pc-sampling.
A clock-based interrupt is set to go off at fixed time intervals (typical inter-
vals are perhaps 1–10 milliseconds). At each interrupt, the profiler checks
the current program counter, pc, and increments a counter. A postprocess-
ing step uses the counter values to give the user a statistical view of how
much time was spent in every line or subroutine. 

The second type of profiler is based on instrumentation. The execut-
able is modified to increment a counter at every branch (goto, loop, etc.)
or label. The instrumentation allows us to obtain an exact count of how
many times every instruction was executed. The tools melds this count
with a static estimate of how much time an instruction or set of instruc-
tions takes to execute. Together, this provides an estimate for how much
time is spent in different parts of the code. The advantage of the instru-
mentation approach is that it is not statistical. We can get an exact count
of how many times an instruction is executed. Nonetheless, particularly
with parallel codes, be wary of instrumentation-based profilers; pc-
sampling usually gives more accurate information. 

There are two problems with instrumentation-based approaches that
particularly affect parallel codes. The first problem is that the tool must
make an estimate of how much time it takes to execute a set of instruc-
tions. As we have seen, the amount of time it takes to execute an instruc-
tion can be highly context sensitive. In particular, a load or store might
take widely varying amounts of time depending on whether the data is in
cache, in some other processor’s cache, or in memory. The tool typically
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does not have the context to know, so typically instrumentation-based pro-
filers assume that all memory references hit in the cache. Relying on such
information might lead us to make the wrong trade-offs. For example,
using such a tool you might decide to use a dynamic schedule to minimize
load imbalance while completely ignoring the more important locality
considerations. 

The second problem with instrumentation-based profilers is that they
are intrusive. In order to count events, the tool has changed the code. It is
quite possible that most of the execution time goes towards counting
events rather than towards the original computation. On uniprocessor
codes this might not be an important effect. While instrumenting the code
might increase the time it takes to run the instrumented executable, it does
not change the counts of what is being instrumented. With multiprocessor
codes, though, this is not necessarily the case. While one processor is busy
counting events, another processor might be waiting for the first processor
to reach a barrier. The more time the first processor spends in instrumen-
tation code, the more time the second processor spends at the barrier. It is
possible that an instrumented code will appear to have a load imbalance
problem while the original, real code does not.

Using a pc-sampling-based profiler, we can discover which lines of
code contribute to execution time in the parallel program. Often, profilers
in OpenMP systems give an easy way to distinguish the time spent in a
parallel portion of the code from the time spent in serial portions. Usually,
each parallel loop or region is packaged in a separate subroutine. Looking
at a profile, it is therefore very easy to discover what time is spent in serial
portions of the code and in which serial portions. For loop-based parallel-
ization approaches, this is the key to figuring out how much of the pro-
gram is actually parallelized and which additional parts of the program we
should concentrate on parallelizing. 

With domain decomposition, coverage is less of an issue. Often, the
entire program is parallelized. Sometimes, though, coverage problems can
exist, and they tend to be more subtle. With domain decomposition, por-
tions of code might be replicated; that is, every processor redundantly
computes the same information. Looking for time spent in these replicated
regions is analogous to looking for serial regions in the loop-based codes.

Regardless of which parallelization strategy, loop-level parallelization
or domain decomposition, is employed, we can also use a profiler to mea-
sure load imbalance. Many profilers allow us to generate a per-thread, per-
line profile. By comparing side by side the profiles for multiple threads, we
can find regions of the code where some threads spend more time than
others. Profiling should also allow us to detect synchronization issues. A
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profile should be able to tell us how much time we are spending in critical
sections or waiting at barriers.

Many modern microprocessors provide hardware counters that allow
us to measure interesting hardware events. Using these counters to mea-
sure cache misses can provide an easy way to detect locality problems in
an OpenMP code. The Origin system provides two interfaces to these
counters. The perfex utility provides an aggregate count of any or all of the
hardware counters. Using it to measure cache misses on both a serial and
parallel execution of the code can give a quick indication of whether cache
misses are an issue in the code and whether parallelization has made
cache issues worse. The second interface (Speedshop) is integrated
together with the profiler. It allows us to find out how many cache misses
are in each procedure or line of the source code. If cache misses are a
problem, this tool allows us to find out what part of the code is causing
the problem.

6.4 Dynamic Threads

So far this chapter has considered the performance impact of how you
code and parallelize your algorithm, but it has considered your program as
an isolated unit. There has been no discussion of how the program inter-
acts with other programs in a computer system. In some environments,
you might have the entire computer system to yourself. No other applica-
tion will run at the same time as yours. Or, you might be using a batch
scheduler that will insure that every application runs separately, in turn.
In either of these cases, it might be perfectly reasonable to look at the per-
formance of your program in isolation. On some systems and at some
times, though, you might be running in a multiprogramming environment.
Some set of other applications might be running concurrently with your
application. The environment might even change throughout the execu-
tion time of your program. Some other programs might start to run, others
might finish running, and still others might change the number of proces-
sors they are using.

OpenMP allows two different execution models. In one model, the
user specifies the number of threads, and the system gives the user exactly
that number of threads. If there are not enough processors or there are not
enough free processors, the system might choose to multiplex those
threads over a smaller number of processors, but from the program’s point
of view the number of threads is constant. So, for example, in this mode
running the following code fragment:
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      call omp_set_num_threads(4)
!$omp parallel
!$omp critical
      print *, 'Hello'
!$omp end critical
!$omp end parallel

will always print “Hello” four times, regardless of how many processors
are available. In the second mode, called dynamic threads, the system is
free at each parallel region or parallel do to lower the number of threads.
With dynamic threads, running the above code might result in anywhere
from one to four “Hello”s being printed. Whether or not the system uses
dynamic threads is controlled either via the environment variable OMP_
DYNAMIC or the runtime call omp_set_dynamic. The default behavior is
implementation dependent. On the Origin 2000, dynamic threads are
enabled by default. If the program relies on the exact number of threads
remaining constant, if, for example, it is important that “Hello” is printed
exactly four times, dynamic threads cannot be used. If, on the other hand,
the code does not depend on the exact number of threads, dynamic
threads can greatly improve performance when running in a multipro-
gramming environment (dynamic threads should have minimal impact
when running stand-alone or under batch systems).

Why can using dynamic threads improve performance? To under-
stand, let’s first consider the simple example of trying to run a three-
thread job on a system with only two processors. The system will need to
multiplex the jobs among the different processors. Every so often, the sys-
tem will have to stop one thread from executing and give the processor to
another thread. Imagine, for example, that the stopped, or preempted,
thread was in the middle of executing a critical section. Neither of the
other two threads will be able to proceed. They both need to wait for the
first thread to finish the critical section. If we are lucky, the operating sys-
tem might realize that the threads are waiting on a critical section and
might immediately preempt the waiting threads in favor of the previously
preempted thread. More than likely, however, the operating system will
not know, and it will let the other two threads spin for a while waiting for
the critical section to be released. Only after a fixed time interval will
some thread get preempted, allowing the holder of the critical section to
complete. The entire time interval is wasted. 

One might argue that the above is an implementation weakness. The
OpenMP system should communicate with the operating system and
inform it that the other two threads are waiting for a critical section. The
problem is that communicating with the operating system is expensive.
The system would have to do an expensive communication every critical
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section to improve the performance in the unlikely case that a thread is
preempted at the wrong time. One might also argue that this is a degener-
ate case: critical sections are not that common, and the likelihood of a
thread being preempted at exactly the wrong time is very small. Perhaps
that is true, but barriers are significantly more common. If the duration of
a parallel loop is smaller than the interval used by the operating system to
multiplex threads, it is likely that at every parallel loop the program will
get stuck waiting for a thread that is currently preempted.

Even ignoring synchronization, running with fewer processors than
threads can hinder performance. Imagine again running with three threads
on a two-processor system. Assume that thread 0 starts running on proces-
sor 0 and that thread 1 starts running on processor 1. At some point in
time, the operating system preempts one of the threads, let us say thread
0, and gives processor 0 to thread 2. Processor 1 continues to execute
thread 1. After some more time, the operating system decides to restart
thread 0. On which processor should it schedule thread 0? If it schedules it
on processor 0, both thread 0 and thread 2 will get fewer CPU cycles than
thread 1. This will lead to a load balancing problem. If it schedules it on
processor 1, all processors will have equal amounts of CPU cycles, but we
may have created a locality problem. The data used by thread 0 might still
reside in cache 0. By scheduling thread 0 on processor 1, we might have to
move all its data from cache 0 to cache 1.

We have given reasons why using more threads than the number of
processors can lead to performance problems. Do the same problems
occur when each parallel application uses less threads than processors,
but the set of applications running together in aggregate uses more threads
than processors? Given, for example, two applications, each requesting all
the processors in the system, the operating system could give each appli-
cation half the processors. Such a scheduling is known as space sharing.
While space sharing is very effective for applications using dynamic
threads, without dynamic threads each application would likely have more
threads than allotted processors, and performance would suffer greatly.
Alternatively, the operating system can use gang scheduling—scheduling
the machine so that an application is only run when all of its threads can
be scheduled. Given two applications, each wanting all the processors in
the system, a gang scheduler would at any given time give all the proces-
sors to one of the applications, alternating over time which of the applica-
tions gets the processors. For programs run without dynamic threads, gang
scheduling can greatly improve performance over space sharing, but using
dynamic threads and space sharing can improve performance compared to
no dynamic threads and gang scheduling.
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There are at least three reasons why gang scheduling can be less effec-
tive than space sharing with dynamic threads. First, gang scheduling can
lead to locality problems. Each processor, and more importantly each
cache, is being shared by multiple applications. The data used by the mul-
tiple applications will interfere with each other, leading to more cache
misses. Second, gang scheduling can create packaging problems. Imagine,
for example, a 16-processor machine running two applications, each using
nine threads. Both applications cannot run concurrently using gang sched-
uling, so the system will alternate between the two applications. Since
each one only uses nine threads, seven of the processors on the system
will be idle. Finally, many applications’ performance does not scale lin-
early with the number of processors. For example, consider running two
applications on a two-processor machine. Assume that each one individu-
ally gets a speedup of 1.6 on two processors. With gang scheduling, each
application will only get the processors half the time. In the best case,
each application will get a speedup of 0.8 (i.e., a slowdown of 20%) com-
pared to running serially on an idle machine. With space sharing, each
application will run as a uniprocessor application, and it is possible that
each application will run as fast as it did running serially on an idle
machine.

6.5 Bus-Based and NUMA Machines

Many traditional shared memory machines, such as the Sun UE10000,
Compaq’s AlphaServer 8400, and SGI’s Power Challenge, consist of a bus-
based design as shown in Figure 6.5. On one side of the bus sit all the pro-
cessors and their associated caches. On the other side of the bus sits all
the memory. Processors and memory communicate with each other exclu-
sively through the bus.

Memory Memory

...

...

Processor Cache Processor Cache Processor Cache

Figure 6.5 A bus-based multiprocessor.
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From the programmer’s point of view, bus-based multiprocessors have
the desirable property that all memory can be accessed equally quickly
from any processor. The problem is that the bus can become a single point
of contention. It will usually not have enough bandwidth to support the
worst case where every processor is suffering cache misses at the same
time. This can lead to a performance wall. Once the bus is saturated, using
more processors, either on one application or on many, does not buy any
additional performance. A second performance limitation of bus-based
machines is memory latency. In order to build a bus powerful enough to
support simultaneous accesses from many processors, the system may
slow down the access time to memory of any single processor.

An alternative type of system design is based on the concept of NUMA.
The HP Exemplar [BA 97], SGI Origin 2000 [LL 97], Sequent NUMA-Q 2000
[LC 96], and the Stanford DASH machine [DLG 92] are all examples of
NUMA machines. The architecture can be viewed as in Figure 6.6.

Memory is associated with each processor inside a node. Nodes are
connected to each other through some type of, possibly hierarchical, net-
work. These are still shared memory machines. The system ensures than
any processor can access data in any memory, but from a performance
point of view, accessing memory that is in the local node or a nearby node
can be faster than accessing memory from a remote node.

There are two potential performance implications to using NUMA ma-
chines. The first is that locality might matter on scales significantly larger
than caches. Recall our dense matrix scaling example from earlier in the

Memory

Processor Cache

Memory

Processor Cache

Memory

Processor Cache

Network

Figure 6.6 A NUMA multiprocessor.
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chapter. When scaling a 4000 by 4000 element matrix, we said that cache
locality was not that important since each processor’s portion of the ma-
trix was larger than its cache. Regardless of which processor scaled which
portion of the matrix, the matrix would have to be brought into the pro-
cessor’s cache from memory. While a 4000 by 4000 element matrix is big-
ger than the aggregate cache of eight processors, it is not necessarily
bigger than the memory in the nodes of the processors. Using a static
scheduling of the iterations, it is possible that each processor will scale the
portion of the matrix that resides in that processor’s local memory. Using a
dynamic schedule, it is not.

The second performance implication is that a user might worry about
where in memory a data structure lives. For some data structures, where
different processors process different portions of the data structure, the
user might like for the data structure itself to be distributed across the dif-
ferent processors. Some OpenMP vendors supply directive-based exten-
sions to allow users control over the distribution of their data structures.
The exact mechanisms are highly implementation dependent and are
beyond the scope of this book.

One might get the impression that NUMA effects are as critical to per-
formance as cache effects, but that would be misleading. There are several
differences between NUMA and cache effects that minimize the NUMA
problems. First, NUMA effects are only relevant when the program has
cache misses. If the code is well structured to deal with locality and almost
all the references are cache hits, the actual home location of the cache line
is completely irrelevant. A cache hit will complete quickly regardless of
NUMA effects.

Second, there is no NUMA equivalent to false sharing. With caches, if
two processors repeatedly write data in the same cache line, that data will
ping-pong between the two caches. One can create a situation where a
uniprocessor code is completely cache contained while the multiprocessor
version suffers tremendously from cache issues. The same issue does not
come up with memory. When accessing data located in a remote cache,
that data is moved from the remote cache to the local cache. Ping-ponging
occurs when data is repeatedly shuffled between multiple caches. In con-
trast, when the program accesses remote data on a NUMA machine, the
data is not moved to the memory of the local node. If multiple processors
are writing data on the same page,5 the only effect is that some processors,
the nonlocal ones, will take a little longer to complete the write. In fact, if

5 The unit of data in a cache is a cache line. The analogous unit of data in memory is a page.
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the two processors are writing data on different cache lines, both writes
might even be cache contained; there will be no NUMA effects at all.

Finally, on modern systems, the difference between a cache hit and a
cache miss is very large, a factor of 70 on the Origin 2000. The differences
between local and remote memory accesses on the Origin are much
smaller. On a 16-processor system, the worst-case latency goes up by a
factor of 2.24. In terms of bandwidth, the difference is even smaller. The
amount of bandwidth available from a processor to the farthest memory
node is only 15% less than the amount of bandwidth available to local
memory. Of course, the ratio of remote to local memory latency varies
across different machines; for larger values of this ratio, the NUMA effect
and data distribution optimizations can become increasingly important.

6.6 Concluding Remarks

We hope that we have given an overview of different factors that affect
performance of shared memory parallel programs. No book, however, can
teach you all you need to know. As with most disciplines, the key is prac-
tice. Write parallel programs. See how they perform. Gain experience.
Happy programming.

6.7 Exercises

1. Implement the blocked version of the two-dimensional recursive, con-
volutional filter described in Section 6.2.4. To do this you will need to
implement a point-to-point synchronization. You may wish to reread
Section 5.5 to understand how this can be done in OpenMP.

2. Consider the following matrix transpose example:

real*8 a(N, N), b(N, N)
do i = 1, N
    do j = 1, N
        a(j, i) = b(i, j)
    enddo
enddo

a) Parallelize this example using a parallel do and measure the parallel
performance and scalability. Make sure you measure just the time
to do the transpose and not the time to page in the memory. You
also should make sure you are measuring the performance on a
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“cold” cache. To do this you may wish to define an additional array
that is larger than the combined cache sizes in your system, and
initialize this array after initializing a and b but before doing the
transpose. If you do it right, your timing measurements will be
repeatable (i.e., if you put an outer loop on your initialization and
transpose procedures and repeat it five times, you will measure
essentially the same time for each transpose). Measure the parallel
speedup from one to as many processors as you have available with
varying values of N. How do the speedup curves change with dif-
ferent matrix sizes? Can you explain why? Do you observe a limit
on scalability for a fixed value of N? Is there a limit on scalability if
you are allowed to grow N indefinitely?

b) One way to improve the sequential performance of a matrix trans-
pose is to do it in place. The sequential code for an in-place trans-
pose is

do i = 1, N
    do j = i + 1, N
        swap = a(i, j)
        a(i, j) = a(j, i)
        a(j, i) = swap
    enddo
enddo

Parallelize this example using a parallel do and include it in the tim-
ing harness you developed for Exercise 2a. Measure the perfor-
mance and speedup for this transpose. How does it compare with
the copying transpose of Exercise 2a? Why is the sequential perfor-
mance better but the speedup worse?

c) It is possible to improve both the sequential performance and paral-
lel speedup of matrix transpose by doing it in blocks. Specifically,
you use the copying transpose of Exercise 2a but call it on sub-
blocks of the matrix. By judicious choice of the subblock size, you
can keep more of the transpose cache-contained, thereby improving
performance. Implement a parallel blocked matrix transpose and
measure its performance and speedup for different subblock sizes
and matrix sizes.

d) The SGI MIPSPro Fortran compilers [SGI 99] include some extensions
to OpenMP suitable for NUMA architectures. Of specific interest here
are the data placement directives distribute and distribute_reshape.
Read the documentation for these directives and apply them to your
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transpose program. How does the performance compare to that of
the default page placement you measured in Exercise 2a–c? Would
you expect any benefit from these directives on a UMA architecture?
Could they actually hurt performance on a UMA system?
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Fortran C/C++

Syntax

sentinel directive-name [clause] ... #pragma omp directive-name [clause] ... 
Continuation Trailing \
Conditional #ifdef _OPENMP
compilation       ...

#endif

Fixed form Free form

Sentinel !$omp | c$omp | *$omp 
Continuation !$omp+
Conditional !$ | c$ | *$ 
compilation

!$omp
Trailing &

!$

Parallel region construct

!$omp parallel [clause] ... 
    structured-block
!$omp end parallel

#pragma omp parallel [clause] ... 
    structured-block

Work-sharing constructs

!$omp do [clause] ...
    do-loop
!$omp enddo [nowait]

#pragma omp for [clause] ...
    for-loop

!$omp sections [clause] ... 
[!$omp section
    structured-block] ...
!$omp end sections [nowait]

#pragma omp sections [clause] ...
{
[#pragma omp section
    structured-block] ...
}

!$omp single [clause] ... 
    structured-block
!$omp end single [nowait]

#pragma omp single [clause] ... 
    structured-block

Table A.1 OpenMP directives.
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Fortran C/C++

Combined parallel work-sharing constructs

!$omp parallel do [clause] ... 
    do-loop
[!$omp end parallel do]

#pragma omp parallel for [clause] ...
    for-loop

!$omp parallel sections [clause] ... 
[!$omp section
    structured-block] ...
!$omp end parallel sections

#pragma omp parallel sections [clause] ...
{
[#pragma omp section
    structured-block] ...
}

Synchronization constructs

!$omp master
    structured-block
!$end master

#pragma omp master
    structured-block

!$omp critical [(name)]
    structured-block
!$omp end critical [(name)]

#pragma omp critical [(name)]
    structured-block

!$omp barrier #pragma omp barrier

!$omp atomic
    expression-statement

#pragma omp atomic
    expression-statement

!$omp flush [(list)] #pragma omp flush [(list)]

!$omp ordered
    structured-block
!$omp end ordered

#pragma omp ordered
    structured-block

Data environment

!$omp threadprivate (/c1/, /c2/) #pragma omp threadprivate (list)

Table A.1 (Continued)
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Fortran C/C++
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shared(list) y y y y y y

private(list) y y y y y y y y y y y y

firstprivate(list) y y y y y y y y y y y y

lastprivate(list) y y y y y y y y

default(private | shared | none) y y y

default(shared | none) y y y

reduction (operator | 
intrinsic : list) y y y y y y y y y y

copyin (list) y y y y y y

if (expr) y y y y y y

ordered y y y y

schedule(type[,chunk]) y y y y

nowait y y y y y y

Table A.2 OpenMP directive clauses.
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Fortran C/C++ Description

call omp_set_num_threads (integer) void omp_set_num_threads (int) Set the number of threads to use in 
a team.

integer omp_get_num_threads () int omp_get_num_threads (void) Return the number of threads in the 
currently executing parallel region. 

integer omp_get_max_threads () int omp_get_max_threads (void) Return the maximum value that 
omp_get_num_threads may return.

integer omp_get_thread_num () int omp_get_thread_num (void) Return the thread number within 
the team.

integer omp_get_num_procs () int omp_get_num_procs (void) Return the number of processors 
available to the program.

call omp_set_dynamic (logical) void omp_set_dynamic (int) Control the dynamic adjustment of 
the number of parallel threads.

logical omp_get_dynamic () int omp_get_dynamic (void) Return .TRUE. if dynamic threads is 
enabled, .FALSE. otherwise.

logical omp_in_parallel () int omp_in_parallel (void) Return .TRUE. for calls within a 
parallel region, .FALSE. otherwise.

call omp_set_nested (logical) void omp_set_nested (int) Enable/disable nested parallelism.

logical omp_get_nested () int omp_get_nested (void) Return .TRUE. if nested parallelism 
is enabled, .FALSE. otherwise.

Table A.3 OpenMP runtime library routines.
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Fortran C/C++ Description

omp_init_lock (var) void omp_init_lock(omp_lock_t*) Allocate and initialize the lock.

omp_destroy_lock (var) void omp_destroy_lock(omp_lock_t*) Deallocate and free the lock.

omp_set_lock(var) void omp_set_lock(omp_lock_t*) Acquire the lock, waiting until it 
becomes available, if necessary.

omp_unset_lock (var) void omp_unset_lock(omp_lock_t*) Release the lock, resuming a 
waiting thread (if any).

logical omp_test_ lock(var) int omp_test_lock(omp_lock_t*) Try to acquire the lock, return 
success (TRUE) or failure 
(FALSE).

Table A.4 OpenMP lock routines.
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Variable Example Description

OMP_SCHEDULE "dynamic, 4" Specify the schedule type for parallel loops with a 
RUNTIME schedule.

OMP_NUM_THREADS 16 Specify the number of threads to use during 
execution.

OMP_DYNAMIC TRUE or FALSE Enable/disable dynamic adjustment of threads.

OMP_NESTED TRUE or FALSE Enable/disable nested parallelism.

Fortran + * – .AND. .OR. .EQV. .NEQV. MAX MIN IAND IOR IEOR

C/C++ + * – & | ^ && ||

Fortran + * – / .AND. .OR. .EQV. .NEQV. MAX MIN IAND IOR IEOR

C/C++ ++ –– + * – / & ^ << >> |

Table A.5 OpenMP environment variables.

Table A.6 OpenMP reduction operators.

Table A.7 OpenMP atomic operators.
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I!$ sentinel, 18–19
&& operator (C), 63
|| operator (C), 63

Acceptable data races, 
144–146

multiple writers, relaxed 
algorithm, 145

multiple writers that write same 
value, 145

See also data races
Amdahl’s law, 173–174
ANSI X3H5 standards, 13
anti dependences, 73–74

defined, 72
removing, 73–74, 81
See also data dependences

APIs (application programming 
interfaces), 16

arrays
dimensions, 69
dividing columns across 

processors, 191
dividing rows across

processors, 191
Fortran storage of, 185
index, 102
loops initializing, 77
permutation, 68
zeroing, 181, 190

atomic directive, 129, 152–155
advantages, 198
building histogram with, 

154

critical directive perfor-
mance tradeoffs, 154

as critical section 
replacement, 198

defined, 152
multiple variables and, 198
nonoverlapping phases 

and, 153–154
operators, 153
restrictions, 153
syntax, 152–153
See also synchronization 

constructs
audience, this book, xi–xii
automatic variables, 54, 55

declared within lexical 
extent, 55

scoping rules, 125

Barrier directive, 22–23
defined, 157–158
illustrated, 159
multiple, 123
synchronization constructs 

and, 128–129
syntax, 158

barriers, 157–159, 192–195
cost, 192
eliminating, 193
implicit, 158–159, 193
synchronization, 157, 158, 

193
time measurement, 

192–193
uses, 158, 192

binding
defined, 130
dynamic, 128
lexical, 128

block structure, 119–120
code violation of, 119
defined, 119

bus-based multiprocessors, 8, 
204–205

illustrated, 204
performance limitations, 

205
programmer’s point of 

view, 205

C/C++, 2, 6
&& operator, 63
|| operator, 63
atomic directive syntax, 

153
barrier directive syntax, 

158
continue construct, 45
critical directive syntax, 

147
default clause syntax, 58
default scoping rules in, 56
directives in, 6
do directive syntax, 113
firstprivate and lastprivate

in, 64–65
flush directive syntax, 163
master directive syntax, 

161
C/C++ (continued)

_OPENMP macro name, 19

Index
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parallel directive syntax, 
94–95

parallel for directive 
syntax, 43

private variables in, 53
Pthreads support, 12
reduction operators for, 60
sample scoping clauses in, 

50
section directive syntax, 

115
single directive syntax, 117
threadprivate directive syn-

tax, 105
threadprivate variables 

and, 106
See also Fortran

cache coherence, 184
cache lines

counting odd/even ele-
ments of array with, 190

defined, 183
ping-pong among caches of 

different processors, 189
of secondary cache, 184, 

185
caches, 179–186

“cache hit,” 182
“cache miss,” 182
defined, 181
illustrated, 183
locality and, 184–186
multiprocessor, 183–184, 

186
on-chip, 182
per-processor, 184
primary, 184
secondary, 184, 185
single-level, 183
size, 181
write-back, 182
write-through, 181

ccNUMA (Cache Coherent Non-
Uniform Memory Access) 
systems, 8

chunks
defined, 86
guided schedule, 89
lower/upper bounds of, 88

schedule types and, 87–88
size, 86, 177
See also loop schedules

clauses
copyin, 44, 106–107
default, 48, 57–58, 95
do directive, 113
firstprivate, 48, 63–65
if, 43, 83–84, 96, 131
lastprivate, 48, 63–65, 75
multiple, 44
ordered, 44
parallel directive, 95–96
private, 21–22, 31, 43, 48, 

51–53, 95
reduction, 22, 35–36, 48, 

59–63, 95
schedule, 43, 86–88
sections directive, 115
shared, 43, 48, 50–51
single directive, 117
See also scope clauses

common blocks, 103
identifying, 103
variables in, 125

communication and data 
environment, 20–22

Compaq AlphaServer, 8, 10
Compaq ProLiant 7000, 172
computational fluid dynamics 

(CFD), 3
conditional compilation, 18–20

defined, 18
use of, 20
using, 19

constructs
critical, 33
mutual exclusion, 22
parallel, 21, 128
parallel control structures, 

20
parallel do, 23–24
selective disabling of, 18
synchronization, 22–23, 

128–129
work-sharing, 94
See also directives

copyin clause, 106–107
defined, 44

multiple, 44
with parallel directive, 

106–107
syntax, 107
using, 107

coverage, 173–175
concept, 174
defined, 172
See also performance

crash analysis application, 4–5
code performance, 5
defined, 4–5
scalability, 5

critical directive, 23, 33–34, 45, 
147–152

atomic directive perfor-
mance tradeoffs, 154

syntax, 147
critical sections, 147–152

access, 148–149
acquiring/releasing, 197
atomic directive 

replacement, 198
cost, 196
counting within, 34
cycles for, 196
efficiency, 198
example, 148, 149–150
Fortran and C/C++ forms, 

147
measuring contention for, 

196
with multiple assignment 

statements, 154
multiple variables and, 198
names, 150–151
nesting, 151–152
on Origin, 196
parallel loop with, 34
using, 148, 149

critical/end critical directive 
pair, 33, 34, 148

custom synchronization, 
162–165

Data dependences
analyzing, 68–69
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anti, 72, 73–74, 81
classifying, 71–73
detecting, 67–70
flow, 72, 76–78, 81
importance of, 66
loop containing multiple, 

73
loop-carried, 67, 71
Mandelbrot generator, 30
non-loop-carried, 71
nonremovable, 78–81
output, 72, 74–76
problem of, 66–67
removing, 65–82, 73–81, 

82
resources, 66
simple loop with, 66

data races
acceptable, examples of, 

144–146
without conflicts, 143
correctness problems, 66
defined, 66
eradicating, with 

privatization, 143
eradicating, with 

reductions, 144
illustrating, 142
preventing, 81

default clause, 57–58
defined, 48
forms, 58
parallel directive, 95
syntax, 58

directives, 15–16, 17–20
atomic, 130, 152–155
barrier, 22, 22–23, 

157–159
benefits of, 16
in C/C++, 6
code example, 6
continued to next line, 18
critical, 23, 33–34, 45, 130
defined, 6
do, 112–114
end critical, 148
end parallel, 7, 37
end parallel do, 30, 42
end sections, 115

end single, 117
flush, 163–165
in Fortran, 6
function of, 6
master, 45, 130, 161–162
ordered, 45, 130, 159–160
parallel, 37, 45, 94–100
parallel do, 23–24, 28, 

29–30, 41–45, 142
parallel for, 43, 177
sections, 45, 114–116
single, 45, 117–119
syntax, 17–18
threadprivate, 103–106
work-sharing, 111–119

distributed memory, 8–9
application development/

debugging environ-
ments, 11

complexity, 11
impact on code quantity/

quality, 11
scalability and, 10–11
shared memory vs., 10

distributed shared memory 
(DSM) systems, 8

do directive, 112–114
barrier directive and, 123
clauses, 113
defined, 112
for exploiting SPMD-style 

parallelism, 114
parallel region construct 

with, 113–114
syntax, 113
using, 112

do loops, 41
dividing iterations of, 112
iterations, 25
parallel region, 98
See also loops

domain decompositions
loop-level parallelism vs., 

175
with non-sparse algo-

rithms, 176
dynamic schedules, 87, 89

appeal of, 186–187
costs, 177

defined, 86
flexibility, 88
impact on performance, 

187
load balancing with, 177, 

178
locality and, 177–178
for scaling, 187
See also loop schedules

dynamic threads, 133–134, 172, 
201–204

default, 134
defined, 133
performance and, 201–204
space sharing and, 203
use of, 202
See also threads

End critical directive, 148
end parallel do directive, 30, 42
end sections directive, 115
end single directive, 117
environment variables

defined, 16
numerical values, 131
OMP_DYNAMIC, 134, 137
OMP_NESTED, 135, 137
OMP_NUM_THREADS, 7, 

38, 131–132, 137
OMP_SCHEDULE, 135, 137
summary, 137

event synchronization, 157–162
barrier, 22
constructs, 157–162
defined, 147
uses, 22
See also synchronization

exercises
loop-level parallelism, 

90–93
parallel regions, 138–139
performance, 207–209
starting with OpenMP, 40
synchronization, 168–169

explicit synchronization, 32–35
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False sharing, 167–168, 
189–191

defined, 190
exhibition of, 190
NUMA multiprocessors 

and, 206
fine-grained parallelism, 36
firstprivate clause, 63–65

in C++, 64
defined, 48, 63
form and usage, 63
objects in C++, 65
parallel loop with, 64
uses, 64
variable initiation, 64
See also lastprivate clause; 

private clause
fissioning, 79–80

defined, 79–80
loop parallelization using, 

81
part loop parallelization 

with, 80
floating-point variables, 62
flow dependences

caused by reduction, 
removing, 76

defined, 72
loop-carried, 77, 81
parallel version with, 76, 

77, 78
removing, with induction 

variable elimination, 77
removing, with loop 

skewing, 78
removing, with reduction 

clause, 76
serial version with, 76, 77, 

78
See also data dependences

flush directive, 163–165
default, 164
defined, 163
each thread execution of, 

164
producer/consumer 

example using, 164–165

syntax, 163
use of, 164–165

for loops, 41, 44–45
canonical shape, 44
increment expressions, 45
index, 44
start and end values, 44

Fortran, 2, 6
atomic directive syntax, 

152–153
barrier directive syntax, 

158
critical directive syntax, 

147
cycle construct, 45
default clause syntax, 58
default scoping rules in, 

55–56
directives in, 6
do directive syntax, 113
flush directive syntax, 163
Fortran-95, 15
High Performance (HPF), 

9, 13
master directive syntax, 

161
parallel directive syntax, 

94
parallel do directive syn-

tax, 43
Pthreads support, 12
reduction operators for, 60
sample scoping clauses in, 

50
section directive syntax, 

114–115
sentinels, 18–19
single directive syntax, 117
threadprivate directive syn-

tax, 105
threadprivate variables 

and, 106
See also C/C++

Fourier-Motzkin projection, 68
Fujitsu VPP5000, 2

Gang scheduling, 203–204
defined, 203
space sharing vs., 204

global synchronization, 150
global variables, 101
goto statement, 121
granularity, 173–175

concept, 174–175
defined, 172
See also performance

grids, 127
guided schedules

benefits, 89
chunks, 89
defined, 87
See also loop schedules

guided self-scheduling (GSS) 
schedules, 176, 179

Heap-allocated storage, 54
hierarchy of mechanisms, 168
High Performance Fortran 

(HPF), 9, 13
HP 9000 V-Class, 8

IBM SP-2, 9
if clause, 131

defined, 43
parallel directive, 96
parallel do directive, 

83–84
uses, 83–84

inconsistent parallelization, 
191–192

incremental parallelization, 4
induction variable elimination, 

77
inductions, 77
instrumentation-based

profilers, 199–200
defined, 199
problems, 199–200

invalidation-based protocol, 
184
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Language expressions, 17
lastprivate clause, 63–65, 75

in C++, 64
defined, 48, 63
form and usage, 63
objects in C++, 65
parallel loop with, 64
See also firstprivate clause; 

private clause
live-out variables, 74–75

defined, 74
scoped as private, 75
scoped as shared, 74

load, 85
load balancing, 175–179

codes suffering problems, 
176

defined, 172
with dynamic schedule, 

177, 178
locality vs., 178
measurement with 

profilers, 200
static schedules and, 177
static/dynamic schemes 

and, 176
See also performance

locality, 179–192
caches and, 184–186
dynamic schedules and, 

177–178
exploitation, 184
load balancing vs., 178
parallel loop schedules 

and, 186–188
prevalence of, 181
spatial, 185
static schedules and, 189
temporal, 185

lock routines, 155–157
defined, 155
list of, 156, 157
for lock access, 156
for nested lock access, 157
omp_set_nest_lock, 156
omp_test_lock, 156
using, 155

loop interchange, 84
loop nests, 69

containing recurrences, 79
defined, 46
multiple, 46
one loop, parallelizing, 47
outermost loop, 84
parallelism and, 46–47
speeding up, 84

loop schedules, 82, 85
defined, 85
dynamic, 86, 177
GSS, 176, 179
guided, 87, 89
locality and, 186–188
option comparisons, 89
options, 86–88
runtime, 87, 88
specifying, 85
static, 86, 123, 178
types in schedule clause, 

87–88
loop skewing, 78
loop-carried dependences

caused by conditionals, 71
defined, 67
flow, 77, 81
output, 74, 75
See also data dependences

loop-level parallelism, 28
beyond, 93–139
domain decomposition vs., 

175
exercises, 90–93
exploiting, 41–92
increment approach, 199

loops
automatic interchange of, 

186
coalescing adjacent, 193
complicated, 29–32
containing ordered

directive, 160
containing subroutine 

calls, 70
do, 25, 41, 98
do-while, 44
empty parallel do, 175
fissioning, 79–80
for, 41, 44–45
initializing arrays, 77

iterations, 25–26, 39
iterations, manually 

dividing, 110–111
load, 85
multiple adjacent, 193
with nontrivial bounds and 

array subscripts, 68–69
parallel, with critical 

section, 34
restrictions on, 44–45
simple, 23–28
start/end values, 

computing, 38–39
unbalanced, 85

Mandelbrot generator
computing iteration count, 

32–33
defined, 29
dependencies, 30
depth array, 29, 31, 32, 36
dithering the image, 36
mandel_val function, 32
parallel do directive, 

29–30
parallel OpenMP version, 

32
serial version, 29

master directive, 45
code execution, 161
defined, 161
syntax, 161
uses, 162
using, 161
See also synchronization 

constructs
master thread, 20–21

defined, 20
existence, 21

matrix multiplication, 69, 188
memory

cache utilization, 82
fence, 163
latencies, 180

Message Passing Interface 
(MPI), 9, 12
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MM5 (mesoscale model)
defined, 3
performance, 2, 3

mutual exclusion 
synchronization, 147–157

constructs, 147–157, 195
defined, 22, 147
nested, 151–152
performance and, 195–198
See also synchronization

Named critical sections, 
150–151

defined, 150
using, 150–151
See also critical sections

NAS Parallel Benchmarks 
(NASPB 91), 3, 4

nested mutual exclusion, 
151–152

nested parallelism, 126–130
binding and, 129–130
enabling, 129

nesting
critical sections, 151–152
directive, 129–130
loops, 46–47, 69, 79, 84
parallel regions, 126–130
work-sharing constructs, 

122–123
networks of workstations 

(NOWs), 9
non-loop-carried dependences, 

71
nonremovable dependences, 

78–81
NUMA multiprocessors, 

205–207
data structures and, 206
effects, 206, 207
false sharing and, 206
illustrated, 205
performance implications, 

205–206
types of, 205

OMP_DYNAMIC environment 
variable, 134, 137

OMP_NESTED environment 
variable, 135, 137

OMP_NUM_THREADS
environment variable, 7, 38, 
131–132, 137

OMP_SCHEDULE environment 
variable, 135, 137

OpenMP
API, 16
components, 16–17
as defacto standard, xi
defined, xi
directives, 6, 15–16, 17–20
environment variables, 16
execution models, 201
functionality support, 13
getting started with, 15–40
goal, 10
history, 13–14
initiative motivation, 13
language extensions, 17
library calls, 12
performance with, 2–5
reason for, 9–12
resources, 14
routines, 16
specification, xi
synchronization 

mechanisms, 146–147
work-sharing constructs, 

111–119
ordered clause

defined, 44
ordered directive with, 160

ordered directive, 45, 159–160
ordered clause, 160
orphaned, 160
overhead, 160
parallel loop containing, 

160
syntax, 159
using, 160
See also synchronization 

constructs
ordered sections, 159–160

form, 159
uses, 159

using, 160
orphaned work-sharing 

constructs, 123–126
behavior, 124, 125
data scoping of, 125–126
defined, 124
writing code with, 126
See also work-sharing 

constructs
output dependences

defined, 72
loop-carried, 74, 75
parallel version with 

removed, 76
removing, 74–76
serial version containing, 

75
See also data dependences

oversubscription, 133

Parallel applications, 
developing, 6

parallel control structures, 20
parallel directive, 45, 94–100

behavior, 97
clauses, 95–96
copyin clause, 106–107
default clause, 95
defined, 97
dynamically disabling, 

130–131
form, 94–95
if clause, 96
meaning of, 97–99
private clause, 95
reduction clause, 95
restrictions on, 96
shared clause, 95
usage, 95–96

parallel do directive, 23–24, 
41–45, 142

C/C++ syntax, 43
clauses, 43–44
default properties, 28
defined, 41
for dithering loop 

parallelization with, 37
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empty, 174, 175
form and usage of, 42–45
Fortran syntax, 43
if clause, 83–84
implicit barrier, 28
importance, 42
Mandelbrot generator, 

29–30
meaning of, 46–47
nested, 128
overview, 42
parallel regions vs., 98
partitioning of work with, 

98
simple loop and, 26–28
square bracket notation, 42

parallel do/end parallel do
directive pair, 30, 49

parallel execution time, 173
parallel for directive, 43, 177
parallel overhead, 82

avoiding, at low trip-
counts, 83

defined, 82
reducing, with loop 

interchange, 84
parallel processing

applications, 4–5
cost, 1
purpose, 1
support aspects, 15

parallel regions, 39, 93–139
with call to subroutine, 100
defined, 37, 94
do directive combined 

with, 113–114
dynamic extent, 100, 101
loop execution within, 55
multiple, 99
nested, 126–130
parallel do construct vs., 98
restriction violations, 96
runtime execution model 

for, 97
semantics, 126
serialized, 128–129, 135
simple, 97

SPMD-style parallelism 
and, 100

static extent, 100
work-sharing constructs 

vs., 128
work-sharing in, 108–119

parallel scan, 78
parallel task queue, 108–109

implementing, 109
parallelism exploitation, 

108
tasks, 108

Parallel Virtual Machine 
(PVM), 9

parallel/end parallel directive 
pair, 37, 96, 97

parallelism
coarse-grained, 36–39
controlling, in OpenMP 

program, 130–137
degree, setting, 7
fine-grained, 36, 41
incremental, 4
loop nests and, 46–47
loop-level, 28, 41–92
nested, 127
with parallel regions, 

36–39
SPMD-style, 100, 114, 

137–138
parallelization

inconsistent, 191–192
incremental, 4
loop, 80, 81
loop nest, 79

pc-sampling, 199–200
defined, 199
using, 200

performance, 171–209
bus-based multiprocessor, 

205
core issues, 172, 173–198
coverage and, 172, 

173–179
dynamic threads and, 

201–204
enhancing, 82–90
exercises, 207–209

factors affecting, 82
granularity and, 172, 

173–179
leading crash code, 5
load balancing and, 172
locality and, 172, 179–192
MM5 weather code, 2, 3
NAS parallel benchmark, 

APPLU, 3, 4
NUMA multiprocessor, 

205–206
with OpenMP, 2–5
parallel machines and, 172
speedup, 2
synchronization and, 172, 

192–198
performance-tuning

methodology, 198–201
permutation arrays, 68
pointer variables

private clause and, 53
shared clause and, 51

point-to-point synchronization, 
194–195

pragmas
syntax, 18
See also C/C++; directives

private clause, 21–22, 51–53
applied to pointer 

variables, 53
defined, 43, 51
multiple, 49
parallel directive, 95
specifying, 31
use of, 56
work-sharing constructs 

and, 126
private variables, 21, 26–27, 48, 

51–53, 63–65
behavior of, 26–27, 52
in C/C++, 53
finalization, 63–65
initialization, 63–65
priv_sum, 61, 62
uses, 48
values, 51
See also variables

profilers, 199–200
approaches, 199
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profilers (continued)
instrumentation-based,

199–200
for load balancing 

measurement, 200
pc-sampling-based, 199, 

200
per-thread, per-line profile, 

200
Pthreads, 11

C/C++ support, 12
Fortran support, 12
standard, 12

Race condition, 33
recurrences, 78

computation example, 79
parallelization of loop nest 

containing, 79
reduction clause, 22, 35–36, 

59–63, 195
behavior, 61, 62
defined, 48
multiple, 59
for overcoming data races, 

144
parallel directive, 95
redn_oper, 59
syntax, 59
using, 35
var_list, 59

reduction variables, 35–36
elements, 35–36
floating point, 62

reductions, 21
defined, 35
floating-point, 62
getting rid of data races 

with, 144
inductions, 77
operators for C/C++, 60
operators for Fortran, 60
parallelized, OpenMP code 

for, 61
parallelizing, 59–63
specification, 35
subtraction, 63

sum, 60–61, 195
replicated execution, 99, 113
routines

defined, 16
library lock, 155–157
“pure,” 166
single-threaded, 166
thread-safe, 166

runtime library calls, 135–136
omp_get_dynamic, 134
omp_get_max_threads, 135
omp_get_num_threads, 7, 

132, 135
omp_get_thread_num, 135
omp_in_parallel, 135
omp_set_dynamic, 134
omp_set_num_threads,

132, 135
summary, 136

runtime library lock routines, 
155–157

for lock access, 156
for nested lock access, 157

runtime schedules, 87–90
behavior comparison, 

88–90
defined, 87–88
See also loop schedules

Saxpy loop, 23–24
defined, 23
parallelized with OpenMP, 

23–24
runtime execution, 25

scalar expansion
defined, 80
loop parallelization using, 

81
use of, 80

scaling
dense triangular matrix, 

178
sparse matrix, 176–177
static vs. dynamic schedule 

for, 187
schedule clause

defined, 43

syntax, 87
type, 87–88

schedules. See loop schedules
scope clauses, 43

across lexical and dynamic 
extents, 101–102

applied to common block, 
49

in C++, 50
default, 48, 57–58
firstprivate, 48, 63–65
in Fortran, 50
general properties, 49–50
keywords, 49
lastprivate, 48, 63–65, 75
multiple, 44
private, 21–22, 48, 51–53
reduction, 22, 35–36, 48, 

59–63
shared, 21, 48, 50–51
variables, 49
See also clauses

scoping
fixing, through parameters, 

102
fixing, with threadprivate

directive, 104–105
of orphaned constructs, 

125–126
scoping rules

automatic variables, 125
in C, 56
changing, 56–58
default, 53–56
defined, 53
in Fortran, 55–56
variable scopes for C exam-

ple, 57
variable scopes for Fortran 

example, 57
sections, 114–116

critical, 147–152
defined, 114
locks for, 195
ordered, 159–160
output generation, 116
separation, 114

sections directive, 45, 114–116
clauses, 115
syntax, 114–115
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using, 116
Sequent NUMA-Q 2000, 8
serialized parallel regions, 

128–129, 135
SGI Cray T90, 172
SGI Origin multiprocessor, 2, 8

critical sections on, 196
perfex utility, 201
Speedshop, 201

SGI Power Challenge, 8, 10
shared attribute, 21
shared clause, 43, 50–51

applied to pointer variable, 
51

behavior, 50–51
defined, 50
multiple, 49
parallel directive, 95
work-sharing constructs 

and, 126
shared memory 

multiprocessors, 10
application development/

debugging environ-
ments, 11

complexity, 11
distributed platforms vs., 

10
impact on code quantity/

quality, 11
programming 

functionality, 10
programming model, 8
scalability and, 10–11
target architecture, 1–2

shared variables, 21
defined, 21
unintended, 48

sharing
false, 167–168, 189–191
space, 203
See also work-sharing

simple loops
with data dependence, 66
parallelizing, 23–28
synchronization, 27–28

single directive, 45, 117–119
clauses, 117
defined, 117

syntax, 117
uses, 117–118
using, 118
work-sharing constructs 

vs., 118–119
SOR (successive over 

relaxation) kernel, 145
space sharing

defined, 203
dynamic threads and, 203
gang scheduling vs., 204

spatial locality, 185
speedup, 2
SPMD-style parallelism, 100, 

114, 137–138
static schedules, 86, 123

load balancing and, 177
load distribution, 178
locality and, 189
for scaling, 187
See also loop schedules

SUN Enterprise systems, 8, 10
synchronization, 22–23, 

141–169
barriers, 192–195
custom, 162–165
defined, 22
event, 22, 147, 157–162
exercises, 168–169
explicit, 32–35
forms of, 22
global, 150
implicit, 32
minimizing, 177
mutual exclusion, 22, 147–

157, 195–198
need for, 142–147
overhead, 82
performance and, 192–198
point, 163–164
point-to-point, 194–195
practical considerations, 

165–168
simple loop, 27–28
use of, 27

synchronization constructs
atomic, 129, 152–155
barrier, 128–129, 157–159

cache impact on perfor-
mance of, 165, 167

critical, 129, 130, 147–152
event, 157–162
master, 130, 161–162
mutual exclusion, 

147–157
ordered, 130, 159–160

Tasks
index, 127
parallel task queue, 108
processing, 128

temporal locality, 185
threadprivate directive, 103–106

defined, 103
effect on programs, 105
fixing data scoping with, 

104–105
specification, 105–106
syntax, 105
using, 104–105

threadprivate variables, 
105–106

C/C++ and, 106
Fortran and, 106

threads
asynchronous execution, 

33
common blocks to, 103
cooperation, 7
dividing loop iterations 

among, 110–111
do loop iterations and, 25
dynamic, 133–134, 172, 

201–204
execution context, 21
mapping, 25
master, 20–21
more than the number of 

processors, 203
multiple, execution, 47
multiple references from 

within, 103
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threads (continued)
number, controlling, 

131–133
number, dividing work 

based on, 109–111
number in a team, 102
safety, 166–167
sharing global heap, 54
sharing variables between, 

47
single, work assignment to, 

117–119
team, 24, 110
work division across, 99

thread-safe functions, 30
thread-safe routines, 166

Variables
automatic, 54, 55, 125
in common blocks, 125
data references, 49
global, 101
live-out, 74–75
loop use analysis, 67
pointer, 51, 53
private, 21, 26–27, 48, 

51–53, 63–65
reduction, 22, 35, 35–36, 

62
in scope clauses, 49
scopes for C default scop-

ing example, 57
scopes for Fortran default 

scoping example, 57
shared, 21, 48
sharing, between threads, 

47
stack-allocated, 54
threadprivate, 105–106
unscoped, 54

Work-sharing
based on thread number, 

109–111
defined, 47
manual, 110
noniterative, 114–117
outside lexical scope, 123, 

124–125
in parallel regions, 

108–119
replicated execution vs., 

113
work-sharing constructs, 94

behavior summary, 128
block structure and, 119–

120
branching out from, 121
branching within, 122
defined, 108
do, 112–114
entry/exit and, 120–122
illegal nesting of, 122
nesting of, 122–123
in OpenMP, 111–119
orphaning of, 123–126
parallel region construct 

vs., 128
private clause and, 126
restrictions on, 119–123
sections, 114–116
shared clause and, 126
single, 117–119
subroutines containing, 

125
write-back caches, 182
write-through caches, 181
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