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Abstract— It is possible to find the optimized radiation dose 

per session for a radiotherapy (RT) treatment, using a popula-

tion dynamics model. This has already been done in a previous 

work for a protocol with 30 sessions and a fixed dose per ses-

sion. Extending this model to other protocols, with a variable 

number of sessions, we could change the radiation dosage 

while keeping the success probability of treatment at its maxi-

mum value. This could help the RT oncology service managers 

to plan the sequence of patients and treatments adapting it to 

the facilities of the oncology service. Besides, if tumor sur-

rounding tissue is not able to afford a high dosage, it could be 

useful to extend the treatment to a higher number of low dose 

radiation sessions, keeping an optimal treatment. 

Keywords— Radiation Oncology, Mathematical Model, Simu-

lation. 

I. INTRODUCTION  

There is an increasing concern about finding the suitable 

planning that maximizes the outcome of a radiotherapy 

(RT) treatment [1]. Even when prescribed dose can be ap-

plied in the programmed time [2], there are factors like the 

equipment technical maintenance stops that need to be con-

sidered [3]. On the other hand, waiting times have been 

shown to be a major problem in the achievement of high 

treatment efficiency [4, 5]. A tool to optimize the radiother-

apy resources could be helpful to reduce the waiting times 

keeping therapy outcomes constant.  

Recently, a mathematical model has been proposed to 

evaluate the efficiency of radiotherapy as a function of the 

dose and the tumor characteristics [6]. Although that model 

involves some parameters whose values are not precisely 

determined, it gives qualitative results in good agreement 

with clinical practice. Looking for an applicable although 

general method, RT treatment is modeled making the sim-

plest possible assumptions. The existence of an optimum 

dosage which maximizes the treatment results was found 

there.  

In the present work we show how this optimum dosage 

can be adapted to other protocols with a different number of 

sessions, while keeping the optimal probability of the “6 

weeks, 5 sessions per week” reference protocol. This could 

be useful to oncology services to plan the RT treatments 

without decreasing treatment performance. With this the 

oncologists could adjust radiation dosage in order to mini-

mize the damage being caused to the surrounding tissue. 

II. MATERIAL AND METHODS.  

A. Model 

We will use a Lotka-Volterra like model to describe the 

tumor evolution grounded on some assumptions. Tumor 

cells growth X&  (as usual, a dot over a quantity represents 

its time derivative) depends on the current tumor population 

as aX  and its mass-law interaction with lymphocytes, 

bX− . Lymphocyte population grows due to tumor-immune 

system interaction, dXY , and contribution to exponential 

decay, fY− , due to natural cell death. The tumor is as-

sumed to secrete interleukin which produces an immunity 

depression effect [7, 8], proportional to the number of cells 

in the tumor, kX− . In this model a constant flow, u , of 

lymphocytes arrives from the immune system.  

So, we model tumor-immune system interaction using 

the already known equations [9]: 
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Radiotherapy treatments are included in this equation us-

ing the LQ Model [10] for each radiation session. This 

brings a transformation of system (1) including a new equa-

tion for the tumor non clonogenic cells originated from 

radiation damage: 

qZYrZXtBZ

YtBuZXkfYpZYdXYY

XtBbXYaXX

t

l

t

−−=

−++−−+=

−−=

)(

)()(

)(

&&

&&

&&

  (2) 
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B δ&  represent the amount of 

tumor cells and lymphocytes affected by radiation per unit 

time. nT  are the time instants when radiation dose is applied 

and )( nTt −δ  denotes Dirac’s delta function centered at nT . 
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 A dimensionless system can be easily obtained taking 

act /1=  (in absence of external influences) as the unit of 

time, ctt /=τ , daxX /= , bayY /=  and dazZ /= : 
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where )(τγ l , )(τγ t  represent the dimensionless amount of 

lymphocytes and tumor cells affected by radiation per di-

mensionless unit time and, dp /=ε , af /=λ , 

adkb /=κ , 2/ aub=σ , dra /=ρ   and dbqa /2=η . All 

the parameters can be estimated and interpreted as described 

in [11].  

The parameter space analysis exhibits regions with dif-

ferent behaviors for the tumor and immune system interac-

tion [6, 9]. The most relevant parameters are λσ / , inter-

preted here as the efficiency of immune system over tumor 

growth, and κ , as the deficiency of immune system due to 

tumor growth. The appropriate region for radiotherapy treat-

ments is that where 1/ << κλσ . In it, although the tumor 

grows exponentially, the immunity depression effects are  

moderate, so that patients maintain a good Karnofsky per-

formance scale index [12] and fulfill those physical re-

quirements to be subjects to treatment. 

 

B. Treatment optimization 

A reference protocol was mimicked in [6] while coeffi-

cients entering (3) were varied at random among admissible 

values [11]. The simulation, then, covers a wide range of 

tumors and supply general results useful to clinical practice. 

One million of “virtual patients” under treatment were 

simulated. Defining the probability of treatment success 

( sP ) as the fraction of “virtual patients” with no tumor at 

the end of treatment, it could be represented as a function of 

the tissue effect of the LQ Model ),( βαE  (see [10]), and 

the Immune System Tumor Efficiency Rate [6], ISTER , 

defined  as λσ /=ISTER .  

As shown in [6], to each value of ISTER  and E it corre-

sponds a single value sP . This means that the long term 

survival of patients will not improve with higher doses of 

radiation, on the contrary, it is possible to get the maximum 

success probability for our reference protocol at doses be-

tween 2 or 3 Gy [6]. Our model got that higher doses do not 

improve therapy outcomes. 

 

C. Simulation 

In this work, our simulation is basically the same as in 

[6] but differs in the fact that the number of sessions is not 

fixed. We mimic different radiation treatments with Eqs. (3) 

to simulate tumor evolution. To follow radiotherapy treat-

ment in a realistic way, we apply a reference protocol with 

weekend interruptions. Furthermore, the protocols had vari-

able length i.e., are not restricted to 6 weeks. Each virtual 

patient is simulated with a variable number of sessions 

( N ), from 15 to 40, beginning on the 10th day [1, 13]. 

To reproduce tumor evolution resembling a clinical case, 

one needs to calculate the correct values of the coefficients 

appearing in Eqs. (2). Numerical estimation of these coeffi-

cients was already made in [11] (and also in [15] for a 

slightly different model), based on clinically available data, 

showing a possible procedure for clinical professionals to 

estimate these values.  

A statistical study of the dependence of treatment success 

on the dosage and number of radiation sessions has been 

performed. Due to the wide range of possible parameter 

values in Eqs. (3), their values have been drawn randomly 

from a log-normal distribution, to avoid negative values, but 

keeping the immune system efficiency ( λσ / ) always 

smaller than one. The amount of cells affected by radiation, 

including lymphocytes and tumor cells, or the equivalent 

survival factors [10, 16], was taken as random values as in 

[6]. As initial conditions we assumed, for simplicity, the 

number of tumor cells is higher than the number of lympho-

cytes and both populations are distributed as normal random 

numbers. One million of virtual patients was generated 

taking different parameter values in Eqs. (3) and a fourth 

order Runge-Kutta method [14] was used to integrate the 

equations. 

III. RESULTS AND DISCUSION 

The treatment success probability, sP , was calculated as 

a function of ISTER , N  and E . 
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Fig. 1: sP  representation for 7.0=ISTER  as a function of tissue effect 

and number of radiation sessions. Closer to black means lower, yellow 

means closer to 0.7. 

As expected, for each value of N  we obtained similar 

results as those reported in [6]. Furthermore, when a fixed 

value of the ISTER  is taken, the surface represented in 

figure 1 is obtained. This shows that whenever the value of 

N  increases, the optimized value of sP  can be obtained 

with a lower value of E  per session. This allows us to find 

the exact values of E  that optimize sP , for each value of 

N , as represented in figure 2.  

 

Figure 2: Tissue effect per session that maximize the success probability 

sP  for each value of N . 7.0=ISTER . 

 

For a tumor with known values of α  and β  it is easy to 

find the amount of physical radiation per session ( d ) 

matching some E  value and hence the corresponding total 

amount of physical radiation D . To find the right combina-

tion of N  and E , the surrounding tissue properties facing 

radiation damage must be taken into account [10]. 

To illustrate the relevance of these results, let us consider 

an hypothetic patient with 7.0/ =λσ and a tumor with 
11.0 −= Gyα  and Gy1/ =βα . Applying the 2Gy regular 

treatment dosage, each session has a tissue effect of 

6.0=E . With this value of E , the treatment reaches its 

maximum success probability after 26 sessions. Subsequent 

sessions do not contribute to a better healing.  

On the other hand, if under the same conditions, 

Gy5/ =βα , the optimal treatment involves 3.3Gy per 

session. If an oncologist wishes to radiate less than 3Gy per 

session, while keeping the optimal treatment, the treatment 

must be extended, at least, until the 36th session. 

IV. CONCLUSIONS  

The present work presents a generalization of [6] to a 

scenario with a non standard number of sessions. The simu-

lation allows us to find the corresponding tissue effect per 

radiation session providing the maximum value of the suc-

cess probability. If, for instance, due to casual interruptions 

the RT machine could not be available for some time, our 

results could guide the radiotherapists to design a parallel 

treatment as efficient as that initially recommended for 

patients and adapted to the available time window. 

Nonetheless, the reported results are not a definitive an-

swer for the RT planning, since the surrounding tissue has 

not been taken into account here. If the surrounding tissue 

could not afford a high radiation amount per session, it 

could be also helpful to find an alternative treatment involv-

ing lower dosage whereas keeping the optimized success 

probability. The oncologist must then evaluate if a lower 

number of higher doses or higher number of lower doses 

would be less aggressive to the surrounding tissue and 

choose the appropriate one. Our results would help to im-

prove the clinical results by assessing the amounts of radia-

tion with better success probability. 
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