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Over the last decades, the development of high time 
resolution instrumentation allowed an increasing 
detailed chemical and physical characterisation of 
atmospheric aerosol e.g., in terms of chemical 
composition, size distribution, and optical properties. In 
field campaigns a huge variety of parameters are 
typically measured at different time resolutions but it is 
still challenging to use them together in a unique 
modelling process. 
 Source apportionment (SA) methods based on 
chemical composition datasets have been widely used by 
the aerosol community to retrieve the impact of different 
sources on aerosol ambient concentrations e.g. by 
means of receptor modelling (Belis et al., 2019). 
Nevertheless, at the state of the art still few source 
apportionment studies combine high time resolution 
measurements or multi-parameter datasets as input to 
the receptor model. 
 This keynote presentation aims at presenting 
advanced receptor modelling approaches which fully 
exploit the information contained in the data collected in 
field campaigns by a variety of instruments at different 
time resolutions.  
Indeed, the flexibility of the Multilinear Engine ME-2 
program (Paatero, 1999) allows a number of 
improvements in SA studies such as: 
- The multi-time receptor modelling approach 

(originally introduced by Zhou et al., 2004; and 
further implemented e.g. by Crespi et al., 2016) which 
uses input data with their native time resolution so 
that the detailed temporal patterns are maintained 
together with the comprehensive chemical 
characterisation, which is often retrieved on low-time 
resolution samples. This kind of analysis helps in 
better decoupling factor profiles and the temporal 
patterns of the identified emission sources can be 
reconstructed at a time resolution equal to the lowest 
sampling interval present in the dataset.  

- The multi-parameter receptor modelling approach 
using e.g. optical data together with chemical 
variables was firstly introduced by Hopke et al. (2012) 
with the delta-C parameter as a tracer of wood 
combustion. The approach was then implemented 
inserting multi-wavelength absorption coefficients by 
Forello et al. (2019) who retrieved, as original result, 
the source-dependent Absorption Ȧngström 
Exponent (AAE) thus overcoming the limitations 

imposed by the assumptions needed by current 
optical SA methods like e.g. the Aethalometer model; 
indeed, optical SA refers to a simplified 2-sources 
situation (with fossil fuel and biomass burning 
emissions) and imposes a-priori AAE values thus 
increasing the uncertainty on the results. 

- The three-way receptor modelling approach is still 
rarely applied in the literature although it can exploit 
the detailed information contained in the size 
segregated aerosol composition (see e.g. Bernardoni 
et al., 2017). The output provides size distributions 
and size-segregated chemical profiles for the 
identified sources, which are key information for 
health protection actions and the development of 
suitable and effective pollution abatement strategy. 

- The dispersion normalised Positive Matrix 
Factorisation (DN-PMF) approach has been recently 
introduced by Dai et al. (2020) and implemented by 
Sofowote et al. (2021) for multi-time resolution 
datasets. This method aims at decoupling the effect 
due to emission strength variability and to 
atmospheric dispersion on the concentration 
variations observed in ambient measurements by 
scaling measured concentrations with the ventilation 
coefficient. 

 In this presentation, basic theory and examples 
from different field campaigns will be presented to 
highlight strengths and weaknesses of each approach. 
 
 
 The author is grateful to present and past 
research group members for the precious collaboration 
and the huge efforts put in implementing new 
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