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A dynamical system model for tumour–immune system interaction together with a method to mimic
radiation therapy are proposed. A large population of virtual patients is simulated following an ideal
radiation treatment. A characteristic parameter, the immune system–tumor efficiency ratio (ISTER) is
introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treat-
ment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a
patient classification are drawn from the statistics results.
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1. Introduction

Some approaches to cancer growth and behaviour have been made in the past years. Dynamical system
techniques use a population dynamics model (Kuznetsovet al., 1994; Sachset al., 2001; Galach, 2003;
Enderlinget al., 2006) to mathematically describe the tumour behaviour and its interaction with the
immune system. Some of these works model tumour behaviour under clinical treatments like cytokines
(Sotolongo-Costaet al., 2003) or radiovirotherapy (Dingli et al., 2006) and properly explain the qualita-
tive behaviours of several tumours. Even though great efforts had been made to mathematically describe
cancer radiotherapy treatments, they ‘are vaguely tied to [clinical] observations’ (Sachset al., 2001)
and their large number of variables and coefficients make their results hardly transposable to a clinical
context.
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Radiotherapy and surgery are the most effective treatments for cancer, and even while surgery has
a longer tradition, radiotherapy treatments help to improve the control of many tumours (Steel, 1993).
Even when tumour kind is taken into account to design the radiotherapy sessions, those treatments fol-
low strict protocols that often apply a fixed physical radiation dose, hardly taking into account the patient
immunological condition. Thus, a radiotherapy protocol might result in a very low success probability
for some patients starting their treatments with a weakened immune system. In practice, such a treat-
ment will be interrupted if the patient physical condition worsens, although the patient will have already
received inappropriate doses of radiation.

Due to its importance, some works focus on the analysis of the different strategies of radiotherapy
treatment (Enderlinget al., 2007) applied to a certain class of cancer tumour. Looking for an applicable
although general method, we model a radiotherapy treatment making the simplest possible assump-
tions. Furthermore, we will introduce the immune system–tumor efficiency ratio (ISTER) parameter as
a measure of the patient immune system strength to fight back cancer. This parameter allows to classify
patients and find the success probability of each patient group following a radiotherapy treatment proto-
col. Finally, we will use these results to assess the optimized tissue effect (E) in terms of a given patient
physical condition.

2. Model

We will use a Lotka–Volterra-like model to describe the tumour evolution based on some assumptions.
Tumour cell growthẊ (as usual, a dot over a quantity represents its time derivative) depends on the
current tumour population asaX and its mass–law interaction with lymphocytes,−bXY. Lymphocyte
population grows due to tumour–immune system interaction,d XY, and falls in time exponentially,
− f Y, due to natural cell death. Tumour secretes interleukin, which produces an immune depression
effect (Whiteside, 2002, 2006), and we will make the simplest assumption supposing it proportional to
the tumour cell number,−kX. The tumour is localized and there is a constant flow,u, of lymphocytes
from the immune system into this region.

So, we will model tumour–immune system interaction using the already known equations
(Sotolongo-Costaet al., 2003):

Ẋ = aX − bXY,

Ẏ = d XY− f Y − kX + u.
(1)

To take into account the acute effects of radiotherapy, we introduce a radiotherapy characteristic time
scale as well as the corresponding radiation effects. These effects of radiation on tissue are generally
classified in three phases (Steel, 1993): physical phase, when radiation ionizes atoms; chemical phase,
when ionized molecules interact with other biological components of the cell and, finally, biological
phase, where the damage is fixed, and unrepairable cells are signalled to die by apoptosis.

We will classify all these heterogeneous effects, according to their time scale, in two groups: short-
and long-term effects. Short-term effects occur at very small time scales compared with the time scales
on which our model runs (those times for which changes in theX andY variables of system (1) would
become appreciable) and will be modelled as a single instantaneous change. On the other hand, long-
term effects of radiation must be included as a new temporal evolution equation.

Then, we assume that those lymphocytes affected by the radiation die or loose their ability to at-
tack tumour cells instantaneously after the radiation dose and that radiation dose is concentrated at an
infinitesimal instant of time. At that very moment, long-term effects of radiation, like non-clonogenic
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tumour cells appearance, start to take place, whereas short-term effects of radiation instantaneously
modify the state of the system, grouped inδ functions in the equations.

We also assume that when a radiation dose is applied at a given instantTn, it induces a fraction
Bt of the tumour cells to lose their reproductive endowment and to die exponentially. The fractionSt

of tumour cells not affected by radiation follows the linear quadratic model (Enderlinget al., 2006;
Düchtinget al., 1996),

St = 1 − Bt = exp[−E] = exp[−α1− β12], (2)

whereE is known as the tissue effect,α andβ are type A and type B damage coefficients (Steel, 1993)
and1 is the physical radiation dose expressed in Gy as usual in clinical contexts. Furthermore, a fraction
Bl of lymphocytes is also killed by radiation in a manner similar to (2), although having differentα and
β coefficients. We must point out that tumour cells mostly die by unsuccessful mitosis, provoked by
DNA damage (Steel, 1993), but lymphocytes die rapidly in what has been called ‘interphase death’
(Steel, 2002), decreasing rapidly in number.

To include long-term processes in (1), we write a new equation for non-clonogenic tumour cellsZ
(Dingli et al., 2006), taking into account that lymphocyte population is also stimulated, aspZY, through
its interaction with these cells. The number of non-clonogenic tumour cells decays exponentially as−r Z
due to the death of damaged cells and also as−q ZY due to the interaction with lymphocytes. Then, we
arrive to the system

Ẋ = aX − bXY− Ḃt (T)X,

Ẏ = d XY+ pZY− f Y − k(X + Z)+ u − Ḃl (T)Y,

Ż = Ḃt (T)X − r Z − q ZY,

(3)

whereḂt (T) = Bt
∑
δ(T − Tn) and Ḃl (T) = Bl

∑
δ(T − Tn) represent the amount of tumour cells

and lymphocytes affected by radiation per unit time.Tn are the time instants when radiation doses are
applied andδ(T − Tn) denotes Dirac’s delta centred atTn. We assume that lymphocytes interact in
different ways withX andZ cells. As explained before, non-clonogenic tumour cells eventually die due
to unsuccessful mitosis; however, we will assume they keep the same signalling protein production up
to that time, causing the same depression over the immune system.

Equations (3) can be expressed in a dimensionless form taking the tumour duplication timeτc = 1/a
(in absence of external influences) as the characteristic time, so we introduce the dimensionless time
τ = T/τc. Through the substitutionsX = ax/d, Y = ay/b andZ = az/d, we obtain the dimensionless
system:

ẋ = x − xy − γt (τ )x,

ẏ = xy + εzy− λy − κ(x + z)+ σ − γl (τ )y,

ż = γt (τ )x − ρz − ηzy,

(4)

with γl (τ ) = Ḃl (τ ), γt (τ ) = Ḃt (τ ), ε = p/d, λ = f/a, κ = kb/ad, σ = ub/a2, ρ = ra/d and
η = qa2/db. All these parameters can be estimated by a similar procedure as inRodŕıguez-Ṕerezet al.
(2007).
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2.1 Clinical interest region and stochastic tumour model cutoff

A linear stability analysis of the system (4) shows that tumour will vanish toL0 = (0; σ/λ; 0) if σ/λ > 1
and will remain controlled aroundL1 = ((λ− σ)/(1 − κ); 1; 0) if κ < σ/λ < 1 orκ > 1 (Sotolongo-
Costaet al., 2003). If the system isL0 stable and initial tumour size is small enough, then the radiation
treatment is unnecessary, whereas if tumour size is large enough, then the treatment will take it closer
to L0.

TheL1-controlled growth state will be reached only if both parameters fulfill the same condition, in
other words, ifσ/λ andκ are both greater or smaller than unity at the same time. Any other condition
makesL1 < 0, and even when the stable point mathematically exists, it cannot be approximated from
realistic initial conditions (that should remain positive along the simulation time). For those patients
with κ > 1 andσ/λ < 1, the main effects of the tumour will be the depression of immune system,
they will perform badly according to Karnofsky performance scale (Sundstromet al., 2004) and will
not fulfill physical requirements to be subject to treatment.

However, forσ/λ < κ < 1, tumour will grow exponentially and tumour eradication will be achieved
only by bringing the system close enough toL0 so that the immune system can get rid of the tumour.
Figure1 shows stable and unstable regions of (4) and highlights Region III on which this work will
focus.

The chosen characteristic time and the dimensionless parameters allow us to give a very intuitive
interpretation of the critical parameters of (4). We can seeσ/λ as the efficiency of immune system over
tumour growth andκ as the ‘deficiency’ of the immune system due to tumour growth.

It is also easy to see that radiation treatments do not change the stability conditions of system (3),
given that radiotherapy does not change tumour or lymphocytes growth rate but can drive the number of
both kind of cells to very small values. This means that, for the chosen region in the parameter space, any
remaining tumour cells will eventually reproduce and grow exponentially after the end of the treatment.
Although (4) allow for infinitesimalx values, in real systems when the number of tumour cells becomes
small enough immune system may kill them (Steel, 1993). However, in other cases when a few tumour

FIG. 1. Phase diagram of (4). This work focuses inside shadowed region (σ/λ < κ < 1) where tumour growth is exponential and
radiotherapy plays an important role.
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FIG. 2. Evolution of tumour (thick line) and lymphocyte (thin line) populations under radiotherapy treatment.λ = 8.0, σ = 2.0,
κ = 0.7, Sl = 0.2 andSt = 0.7.

cells survive, they can cause tumour regrowth. It is known that this behaviour is almost independent
of tumour size (Steel, 1993) and as an estimation we will assume that the closerL0 is (in terms of the
parameter space of Fig.1) to the line where it becomes a stable point, the higher the probability of
tumour elimination by the immune system will be. Thus, whenx becomes small enough (around 100
cells), we will take

P(σ/λ) =

{
σ/λ if σ/λ < 1

1 if σ/λ > 1,
(5)

as the probability of tumour regression. If no regression occurs, tumour will regrow as shown
in Fig. 2.

We must realize that when the immunodepression term−kX of system (1) is larger than the flux
of lymphocytesu, an unattended method to solve the equations will fail to describe a biological sys-
tem (d’Onofrio, 2005). However, this is a simple way to introduce the immunodepression effect in our
equations and can be considered as the first-order Taylor approximation for a more general non-linear
function. Furthermore, it provides us a very simple map for the parameter space to select the target
tumours of radiotherapy treatments. Finally, the chance of lymphocyte population becoming zero gives
us a natural cutoff for our ordinary differential equation (ODE) system. Then, whenever lymphocyte
population becomes zero, we will assume the tumour escapes lymphocyte control and grows limited
only by space and nutrient existence. At this point, we consider treatment has failed.

3. Simulation

We can mimic different radiation treatments with (4) to simulate tumour evolution. To follow radiother-
apy treatment in a realistic way, we apply a radiation session every workday and none in weekends. All
treatments (Radeset al., 2006; Khoo, 2005) begin on the 10th day, take 6 weeks of radiotherapy and
patients are under observation until 6 months after the end of radiotherapy sessions. We could take up
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a sort of tumours, i.e., breast or colon, and knowing their approximate values ofα andβ, calculate the
survival fraction of cells for a 2-Gy dosage. Instead, we prefer to act in a more general way, and ignoring
the radiation dose, take a random value for the survival fractions of each patient tumour in the interval
shown in Table2. We generate several virtual patients under treatment taking different values for the
parameter values in (4) and use a fourth-order Runge–Kutta method (Presset al., 1992) to integrate
them.

To reproduce tumour evolution resembling that of a clinical case, one needs to calculate the correct
values of the coefficients appearing in (1). Numerical estimation of these coefficients was already made
in Rodŕıguez-Ṕerezet al. (2007) (and also inde Pilliset al., 2005, for a slightly different model) based
on clinically available data showing a possible procedure for clinical professionals to estimate their
values.

Figure2 shows treatment evolution for tumour cells and lymphocytes. We can see how the number
of tumour cells capable of mitosis quickly decreases with the radiation therapy. For long enough times,
if regression behaviour is not accomplished, the tumour regrows exponentially.

An statistical study of the dependence of treatment success on the dosage was performed. Due to
the wide range of possible parameter values in (4), their values are drawn randomly from a log-normal
distribution, to avoid negative values, but keeping the efficiency of immune system (σ/λ) always smaller
than 1. Survival factors (Enderlinget al., 2006; Steel, 1993) are also taken as random values within the
interval shown in Table1. As initial conditions we have supposed, for simplicity, that the number of
tumour cells is higher than the number of lymphocytes and that both populations are distributed as
normal random numbers with parameters shown in Table2. We have also tested other distributions
for the initial conditions as well as for coefficient values to verify that the choice does not affect the
qualitative nature of our results.

At this point, we can proceed to make statistical predictions by generating a population of ‘virtual
patients’ (characterized by their immune system and tumour parameter values) and simulating their
treatment evolutions. Tables2 and3 show parameter values used to generate virtual patients.

TABLE 1 Dimensionless parameter values of (4),
taken fromRodŕıguez-Ṕerez et al.(2007), Enderling
et al. (2006) andDüchting et al.(1996)

Parameter Minimum Maximum

λ 100 103

σ 10−1 105

κ 10−2 104

St 0.5 0.9
Sl 0.1 0.4

TABLE 2 Statistical survival factors and initial conditions for
tumour cells and Tlymphocytes

Coefficient Mean Standard deviation
St 0.6 0.1
Sl 0.18 0.06
x0 1.0 0.1
y0 0.5 0.1
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4. Results and clinical interpretation

We have created a database consisting of over 3× 105 virtual patients, as far as we did not observe any
change in our results when more patients were generated. We have calculated the probability of treatment
success (Ps) as the fraction of patients without tumour at the end of treatment. We have represented this
probability Ps as a function of tissue effectE (see (2)) and ISTER= σ/λ. In Fig. 3, a colour map
of Ps versusE andσ/λ is represented. This induces a classification of patients based on their ISTER
value and to assess those patients to whom, having an extremely low success probability, the application
of high radiation doses would render useless. Radiotherapy is not the appropriate treatment for those
patients, although it could be used as a palliative treatment, if a good balance between drawbacks and
advantages is presumed for a specific patient.

We can see that, for a given value ofσ/λ, two significant values ofE can be defined:E−, below
which Ps is very small (less than 1%) andE+, above whichPs is almost constant (with less than 1% of
change). Results can be fitted (see Appendix A) to one expression of the form,

Ps = Ps(σ/λ, E), (6)

and the significant values ofE computed as functions ofσ/λ. These two threshold values (E− and
E+) divide the phase space(σ/λ, E) into three regions as shown in Fig.3. The success probability is

TABLE 3 Statistical parametervalues

Parameter Log. mean Log. standard deviation
λ 5.0 0.5
σ 2.5 0.5
κ 0.8 0.2

FIG. 3. Ps as a function ofE andσ/λ (ISTER). E− curve corresponds to the minimum values of tissue effect for whichPs > 0.
E+ curve represents the values of tissue effect for whichPs reaches its maximum value, given a fixedσ/λ. Marks (+) E1 = 0.6
andE2 = 0.24 represents the tissue effect in the explained examples.
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negligible in Region I, belowE−, while it almost attains its maximum value aboveE+, in Region III.
However, on the intermediate Region II, asE grows, Ps increases faster towards its maximum value
(above theE+ curve).

The coefficientsα andβ are generally hard to find. Several values of the ratioα/β are reported in
the literature (Steel, 1993). However, this is not enough for the clinical application and at least one of
them must be found (as explained inSteel, 1993) to proceed.

To characterize patients, we only need, among all coefficients involved in (3), to know the ratiou/ f ,
the effective amount of lymphocytes in the absence of tumour effects or immunodepression, anda/b,
the opposition of tumour to be annihilated by lymphocytes. Clinical professionals must determine the
inquiries and tests needed to find a patient’s ISTER= σ/λ = u/ f

a/b . Even though we realize this index
definition only applies to a basic context, we think the concept could be useful to classify patients by
the strenght of their immune system against tumour proliferation.

4.1 Illustrative examples

To show a possible clinical application of this result, let us consider two patients with the same ISTER
= 0.5 and different tumour repair rate capacities described by theα/β parameter value (Abou-Jaoude &
Dale, 2004). We will assume a low repair rate capacity tumour withα = 0.1 Gy−1 andα/β = 1 Gy
and a high repair rate capacity tumour withα = 0.1 Gy−1 andα/β = 10 Gy, so the tumour repair
rate capacities under radiation are different for each case. In both cases, the tissue effects, with an usual
2-Gy dose per day treatment, are represented in Fig.3, like E1 andE2, respectively, and the maximum
healing probability, calculated by expression (6) at the point corresponding to curveE+ for σ/λ = 0.5,
is Ps = 0.43. Table4 shows the optimal calculated values of radiation dose for these two examples of
tumour.

First, let us consider the case withα = 0.1 Gy−1 andα/β = 1 Gy. If we apply a typical dosage of
2 Gy per session of fractionated radiotherapy in our calculations, then the tissue effect will beE1 = 0.6.
However, this high tissue effect value does not really increase the success probability abovePs. A patient
with an immune system efficiency of ISTER= 0.5 has his maximum healing probability for anE+ value
around 0.45 in each radiotherapy session. Then, we must apply a lower dose of 1.7 Gy in each radiation
session and thus avoid an useless excess amount of 9 Gy to be applied in the whole treatment, i.e., a
15% dose reduction.

However, in the case withα = 0.1 Gy−1 andα/β = 10 Gy, the same patient with an ISTER=
0.5 needs a dose of 3.4 Gy to be applied in each session to attain the maximum healing probability
Ps = 0.43. Besides the minimumE− value is 0.22 corresponding to 1.9 Gy of physical radiation

TABLE 4 Optimal values for two different tumours with ISTER= 0.5, E = 0.45

Kind of tumour E for 1 = 2 Gy Optimal1 per session(Gy)
Low repair rate capacity tumour

0.6 1.7α = 0.1 Gy
α/β = 1 Gy

High repair rate capacity tumour
0.24 3.4α = 0.1 Gy

α/β = 10Gy
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per session (see Table4). The oncologist should decide the amount of radiation to apply taking into
account the treatment success probability, estimated by (6), and the radiosensitivity of the surrounding
tissue.

The presented results match with those reported inSundstromet al. (2004) and show that the long-
term survival of patients is not better at higher doses of radiation. On the contrary, the higher number
of long-term survival patients is reached at intermediate doses (between 2 or 3 Gy), even with a smaller
total amount of radiation.

5. Conclusions

The proposed method allows to find the success probability of a fractionated radiotherapy treatment
using the patient ISTER parameter and the survival fractionSt of tumour cells, even if other parameters
involved are unknown. This calculation provides a way to classify patients based on their ISTER value
and to approach to the optimum treatment.

The radiotherapy treatment must be designed for each patient taking into account the immunological
features (ISTER) of each patient. Tissue effect has to be tuned to be larger thanE− (otherwise no success
will be achieved) but needs not to be larger thanE+ (tissue effect at optimal treatment dosage) because
no improvement will be obtained for higher radiation doses. Thus, in accordance with the ALARA
(As Low As Reasonably Achievable) principle (Martin & Harbison, 1998), the physical radiation doses
should be adjusted to bringE as close as possible toE+ but without outranging it. This optimization
process could be performed once the clinical professionals find a way to clinically evaluate the ISTER
parameter value for a given patient. On the other hand, the values ofα andβ in (2) are already known
or feasible to find for many kinds of tumour.

We must remark that the method used in this work does not depend on the chosen model (1) or
the regression probability description given by (5). A more realistic model for both processes could
give us a more accurate expression (6) but even using the simple form used in this work, it is pos-
sible to show that an optimized radiotherapy treatment can be found for a given patient. The robust-
ness of the overall methodology would allow an oncologist to fit any tumour–immune system growth
model to his clinical data and thus estimate the optimal dosage for a given patient in a real clinical
context.

We must note that there are quite complete models that represent to a better extent tumour evolu-
tion (Matzavinos & Chaplain, 2004; Matzavinoset al., 2004) and the ODE model presented here is
comparatively simple. Nevertheless, although a very complex model could be fitted to represent the pre-
cise evolution of tumour cells together with their lymphocyte interaction, the experimental or clinical
measurement of the coefficients involved would not be very precise. A simple model could certainly
underestimate some characteristics of this evolution but may provide a conceptual framework to clinical
professionals. We hope that the work presented in this paper will stimulate experimental research groups
to further investigate the immune system importance in radiotherapy success.
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Appendix A

A.1 Fitting result data to an analytical function

We used a Levenberg–Marquardt (Presset al., 1992) method to fit the result data shown in Fig.3 to a
suitable expression of the form,

Ps(σ/λ, E)

σ/λ
=



θ + φ

(

1 +
(

E + ψ

ϕ

)4
)−1



 (A.1)

for each of the valuesσ/λ computed. This expression gives us a family of functions related to each other
through the coefficientsθ , φ, ψ andϕ. These coefficients are functions of onlyσ/λ and can be easily
fitted using the same numerical method. We have found the following numerical expressions for these
coefficients,

θ = 0.950271×
(
1 − exp

(
−4.66627σλ − 0.24319

))
,

φ = −0.935012+ exp
(
−4.71719σλ − 0.289458

)
,

ϕ = 0.0450091σλ + 0.091267,

ψ = 0.0159581σλ − 0.141425.

(A.2)

Merging all these expressions, it is possible to analyse the behaviour of the success probability
Ps(σ/λ, E) in terms ofσ/λ with no need to resort to more numerical simulations.
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