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Abstract
Purpose: The aim of this letter is to extend a previous nonextensive survival fraction model from

single dose to fractionated radiotherapy treatments.

Methods: Two limit cases, doses given simultaneously and with a long time gap between them,

are considered and matched to provide a general expression for the survival fraction.

Results: A new parameter emerges linking both limits, playing the role of the tissue radioresis-

tance. A critical dose per fraction is found, providing the condition of total target annihilation, as

a function of the new parameter.

Conclusions: The possibility of target tissue annihilation depends only on the critical dose per

fraction, determined by the new radioresistance parameter.
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Recently a new model of survival fraction as function of the radiation dose has been
developed [1] using the Tsallis entropy de�nition [2] and the maximum entropy principle.
However, radiobiology models pursue not only survival fraction models but isoe�ect relation-
ships. Indeed, the well known linear quadratic (LQ) model [3] owes its success to providing
simple isoe�ect relationship for doses in the clinical range.

However LQ model, and its associated family, has raised controversy [4] and has been
both extensively criticized [5�7] and defended [8, 9]. Nevertheless it has become the standard
radiobiology model, replacing the nominal standard dose (NSD) model [10] for isoe�ect
relationships, even when the community is well aware of its limitations and statistical �aws
on its validation and �tting [11].

In order to extend the maximum entropy model to fractionated therapies two facts must
be taken into account. If two radiation beams a�ect a tissue at the same time or if two
radiation exposure events occur immediately one after another, the total e�ective dose must
be the simple sum of both applied doses. On the other hand, if the two radiation sessions
(fractions, in what follows) are weakly time correlated, for example, far apart enough in
time (although the actual meaning of �far apart enough� is to be determined), they could
be considered as independent fractions. Hence, the survival fraction in this case will be just
the product of the respective survival fractions.

Survival fraction, Fs, for a single radiation dose, d, is [1]

Fs(d) =





(
1− d

D0

)γ
∀d < D0

0 ∀d > D0

, (1)

where D0 is the annihilation dose and γ the tissue extensivity index. This model has shown
a remarkable agreement with available experimental data [1, 12], even in those limits where
previous models are less accurate. Also, its mathematical expression is simple and can be
easily plotted and interpreted. A new expression for the survival fraction of a fractionated
treatment can be found that provides a better understanding of isoe�ect relationships. This
letter will focus on the consequences the new concepts, introduced by this Tsallis based
model, have on fractionation.

The survival fraction after n concurrent (i.e. highly correlated) doses must be,

Fs =

[
1−

n∑
i=1

δi

]γ
, (2)
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where δi = di/D0 is the dimensionless dose after the i-th fraction or radiotherapy session.
However, if the fractions are uncorrelated the survival probabilities must be independent,

Fs =
n∏
i=1

(1− δi)γ . (3)

This implies that, for a treatment composed by independent fractions, the e�ective dose
becomes nonadditive.

In order to deal with intermediate situations, i.e. treatments whose radiation fractions
are neither completely nor incompletely independent, sum and product operations need to
be further generalized. It is possible to write (2) as a product, �nding the expression that
turns Fs after n− 1 fractions into Fs after n fractions. So it takes the form,

Fs =
n∏
i=1

(
1− δi

1−∑i−1
k=1 δk

)γ

, (4)

meaning that the annihilation dose in the denominator gets reduced, in practice, by an
amount δi after adition of the i-th fraction. On the other hand, for independent fractions
this critical dose remains constant along the treatment.

Let us introduce the coe�cient ε ∈ [0, 1] relating equations (3) and (4) such that ε =

1 implies radiation fractions are completely correlated while ε = 0 means they are fully
independent. Then, new nonextensive sum,

⊕
, and product,

⊗
, operators can be de�ned

consistently to hold,

Fs =
n∏
i=1

(
1− δi

1− ε⊕i−1
k=1 δk

)γ

=
n⊗
i=1

(1− δi)γ =

(
1−

n⊕
i=1

δi

)γ

, (5)

subject to the condition
⊕n

i=1 δi =
∑n

i=1 δi, for ε = 1. According to both limits interpre-
tation, ε values will vary with the time between fractions and also with tissue repairing or
recovering capabilities.

A single radiation fraction with an e�ective dimensionless dose ∆ equal to the whole
fractionated treatment could be found such that,

Fs = (1−∆)γ =

(
1−

n⊕
i=1

δi

)γ

. (6)
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Figure 1: Isoe�ect relationship data reported for mouse lung by [13] (ε = 0.50, D0 = 11.3 Gy),

mouse skin by [14] (ε = 0.58, D0 = 24.0 Gy) and mouse jejunal crypt cells by [15] (ε = 0.62,

D0 = 16.1 Gy), �tted to our model.

After the i-th fraction, the dimensionless e�ective dose becomes,

∆i = ∆i−1 + δi

[
1−∆i−1

1− ε∆i−1

]
, (7)

assuming ∆1 = δ1.
All fractionated treatments sharing the same value of ∆ = ∆n will provide the same

value for the survival fraction. So, the same ∆ will provide the isoe�ect criterion for the
fractionated therapy.

In order to check the model reliability, it has been �tted to data from [13�15] using a
weighted least square algorithm, as shown in Figure 1. Since ε values for tissue reaction are
far from the limiting behaviors, it is worth to further study the biophysical interpretation
of this new parameter.

Assuming the same dose per fraction, δ, (7) becomes a recursive map, describing the
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behavior of the e�ective dose in a treatment. For a given ε there is a critical value of δ,

δc = 1− ε, (8)

dividing the plane (ε, δ) in two di�erent regions (see �gure 2). For a treatment with δ < δc,
there will always be a surviving portion of the tissue since always ∆n < 1. However, if
δ > δc, after enough fractions ∆n > 1, meaning that e�ective dose has reached the critical
value and every single cell of tissue has been removed by the treatment. Then it is possible
to �nd n0, the threshold value of n, that kills every cell, for a given therapy protocol. This
is shown in inset of Figure 2.

If the desired result is the elimination of the radiated tissue cells, i.e. surrounding tissue
is not a concern for treatment planning, n0 will represent the minimum number of sessions
needed to achieve this goal; any session after that will be unnecessary. On the contrary, if
the therapy goal is tissue cells conservation (for instance in order to preserve an organ), then
the number of sessions must be lower than n0.

The parameter ε is a cornerstone on isoe�ect relationships. A fractionated therapy of
fully independent fractions requires a greater radiation dose per fraction, or more fractions,
in order to reach same isoe�ect as would a treatment with more correlated fractions. The
ε coe�cient acts here as a relaxation term. Immediately after radiation damage occurs
(ε = 1) tissue begins to recover, as ε decreases, until the tissue eventually reaches its initial
radiation response capacity (ε = 0). In other words, the formerly applied radiation results
in a decrease of the annihilation dose (initially equal to D0) describing the e�ect of the
next fraction. The more correlated a fraction is to the previous one, the larger the value
of ε and, thus, the larger the e�ect on the critical dose will be. Notice that unlike γ, that
characterizes the tissue primary response to radiation, ε characterizes the tissue trend to
recover its previous radioresistance.

Correlation between fractions can be translated in terms of the late and acute tissue
e�ects of radiobiology. Indeed, damaged tissue repairing and recovering capabilities should
determine the value of ε. Given a dosage protocol, an early responding tissue would corre-
spond to ε close to 0, whereas late responding tissue, would have ε closer to 1. Notice that in
current working models for hyperfractionated therapies this repairing and recovering e�ects
are introduced as empirical correction factors [16].

As it was shown in [1], nonextensivity properties of tissue response to radiation for single
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Figure 2: The larger plot represents n0 isolines as a function of δ and ε (dashed lines) above δc(ε)

(solid line); below this line, killing all tissue cells is impossible. The small one represents critical

values n0 in terms of δc.

doses are more noticeable for higher doses than predicted by current models. On the contrary,
nonextensive properties for fractionated therapies stand out at lower doses per fraction.
Indeed, for high dosage a few fractions are applied in a treatment and di�erent ε values
would not require to change n. However, in the lower dosage case, more radiation fractions
need to be applied and the ε parameter may become crucial. In this case n values move
away from each other for isoe�ect treatments with di�erent ε. So, in order to achieve the
desired therapy e�ects, fractionated radiotherapy must be planned for a tissue described by
γ, varying δ according to ε. This ε coe�cient should be experimentally studied as its value
tunes the annihilation dose along radiotherapy protocols.

Authors acknowledge the �nancial support from the Spanish Ministerio de Ciencia e
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